Advances in Nuclear Dynamics 4 pp 231-238 | Cite as
Two-Proton Correlations Relative to the Reaction Plane
Abstract
Studies of the collective flow of hadrons in all of its forms - directed, elliptic, radial is an important direction in the understanding of the physics of heavy-ion collisions1. The asymmetries observed in azimuthal distributions in momentum space imply underlying asymmetries in configuration space. But the experimental information about spatial properties of the flowing nuclear systems is at best sparse and is mostly obtained with pion measurements. The E877 collaboration reported2 that the parameters of the pion source created in Au+Au collisions at 10.8 AGeV/c appear to be different for particles emitted at different angles relative to the reaction plane. The information about space-time properties of the proton effective source involved in directed flow is totally absent. Since nucleons are the main carriers of the directed flow in nucleus nucleus collisions at the AGS energies, it is interesting to check whether the parameters of the nucleon source, probed with the help of two-proton correlations, exhibit any dependencies or asymmetries related to the reaction plane orientation. In this paper we present the preliminary results of the first study of the proton correlation function’s dependence on the orientation of the reaction plane.
Keywords
Correlation Function Reaction Plane Final State Interaction Nucleus Nucleus Collision Proton SourcePreview
Unable to display preview. Download preview PDF.
References
- 1.W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47 (1997) 663.ADSCrossRefGoogle Scholar
- 2.D. Miskowiec et al., E877 Coll., Nucl. Phys. A 590 (1995) 473c.CrossRefGoogle Scholar
- 3.J. Barrette et. al, Phys. Rev. Lett. 73 (1994) 2532.ADSCrossRefGoogle Scholar
- 4.J. Barrette et. al, Phys. Rev. C55 (1997) 1420.ADSGoogle Scholar
- 5.J. Barrette et. al, Phys. Rev. C56 (1997) 3254.ADSGoogle Scholar
- 6.S. Voloshin, Y. Zhang, Z. Phys. C70 (1996) 665.Google Scholar
- 7.S. Koonin, Phys. Lett. B 70 (1977) 43.ADSCrossRefGoogle Scholar
- 8.R. Lednicky, V.L. Lyuboshits, Sov. J. Nucl. Phys. 35 (1982) 770.Google Scholar
- 9.S.A. Voloshin, Phys. C55 (1997) 1630.Google Scholar
- 10.S.A. Voloshin et al., E877 Coll., Quark Matter 97 proseedings (to be published), also preprint nucl-ex/9802001.Google Scholar
- 11.The ALLADIN Collaboration, Darmstadt Nachrichten GSI 96-01 report.Google Scholar
- 12.H. Sorge, A. von Keitz, R. Mattiello, H. Stöcker, and W. Greiner, Phys. Lett. B 243 (1990) 7.ADSCrossRefGoogle Scholar
- 13.H. Sorge, R. Mattiello, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 68 (1992) 286.ADSCrossRefGoogle Scholar
- 14.S. Pratt et al., Phys. Rev. C 36 (1990) 2646.ADSCrossRefGoogle Scholar
- 15.S. Pratt et al., Nucl. Phys. A 566 (1994) 103c.ADSCrossRefGoogle Scholar