A Dynamical Effective Model of Ultrarelativistic Heavy Ion Collisions

  • P.-B. Gossiaux
  • P. Danielewicz

Abstract

It is now commonly accepted that the equation of state of nuclear matter presents a phase transition at zero baryon density around a critical temperature of 160 MeV, above which the quarks would be deconfined and the chiral symmetry restored. Theoretically, this transition from hot nuclear matter to quark-gluon plasma (QGP) is fundamental, because deeply related to our understanding of the non-perturbative aspects of QCD. Therefore, major experimental programs have been (AGS, SPS) and will be (LHC, RHIC) developed to tackle the QGP.

Keywords

Nuclear Matter Transport Theory Hadronic Matter Elliptic Flow Dynamical Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Rischke, Y. Pürsün, and J. A. Maruhn, Relativistic hydrodynamics for heavy-ion collisions, Nucl.Phys. A595:346 (1995).ADSGoogle Scholar
  2. 2.
    J. Ellis and K. Geiger, Real time description of parton-hadron conversion and confinement dynamics, Phys. Rev. D52:1500 (1995).ADSGoogle Scholar
  3. 3.
    G.F. Bertsch, H. Kruse, and S.D. Gupta, Boltzmann equation for heavy ion collisions, Phys.Rev. C29:673 (1984)ADSGoogle Scholar
  4. 4.
    C. M. Ko, Q. Li, and R.-C. Wang, Relativistic Vlasov equation for heavy ion collisions, Phys.Rev.Lett. 59:1084 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    P. Danielewicz and G.F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy ion reactions, Nucl.Phys. A533:712 (1991).ADSGoogle Scholar
  6. 6.
    J.D. Walecka, A theory of highly condensed matter, Annals Phys. 83:491 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    B.M. Waldhauser, J.A. Maruhn, H. Stocker, and W. Greiner, The nuclear equation of state from the nonlinear relativistic mean field theory, Phys.Rev. C38:1003 (1988).ADSGoogle Scholar
  8. 8.
    G.E. Brown and M. Rho, Scaling effective Lagrangians in a dense medium, Phys.Rev.Lett 66:2720 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    G.E. Brown, M. Buballa, and M. Rho, A mean field theory of the chiral phase transition, Nucl.Phys. A609:519 (1996).ADSGoogle Scholar
  10. 10.
    G. Baym and S. A. Chin, Landau theory of relativistic Fermi liquids, Nucl.Phys. A262:527 (1976).ADSGoogle Scholar
  11. 11.
    H. Feldmeier and J. Lindner, Field dependent coupling strength for scalar fields, Z. Phys. A341:83 (1991).ADSGoogle Scholar
  12. 12.
    F. Karsch, On QCD thermodynamics with improved actions, Nucl. Phys. Proc. Suppl. 60A:169 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Pang, T. J. Schlägel, and S. H. Kahana, ARC: a relativistic cascade, Nucl. Phys. A544:435c (1992).ADSGoogle Scholar
  14. 14.
    P. Danielewicz et. al., Disappearance of elliptic flow: a new probe for the nuclear equation of state, (submitted to Phys.Rev.Lett).Google Scholar
  15. 15.
    R. Lacey, Elliptic flow in E895, in: ”Proc. 14th Winter Workshop on Nuclear Dynamics”, Snowbird, USA, 1998 ed. W. Bauer, Plenum, New York (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • P.-B. Gossiaux
    • 1
    • 2
  • P. Danielewicz
    • 2
  1. 1.SUBATECHUMR université, Ecole des Mines, IN2P3/CNRSNantesFrance
  2. 2.National Superconducting Cyclotron Laboratory and the Department of Physics and AstronomyMichigan State UniversityUSA

Personalised recommendations