Excitation Energy and Temperature in the Multifragmentation of 1 GeV/Nucleon Au+C

  • M. L. Tincknell
  • S. Albergo
  • F. Bieser
  • F. P. Brady
  • Z. Caccia
  • D. A. Cebra
  • A. D. Chacon
  • J. L. Chance
  • Y. Choi
  • S. Costa
  • J. B. Elliott
  • M. L. Gilkes
  • J. A. Hauger
  • A. S. Hirsch
  • E. L. Hjort
  • A. Insolia
  • M. Justice
  • D. Keane
  • J. C. Kintner
  • V. Lindenstruth
  • M. A. Lisa
  • U. Lynen
  • H. S. Matis
  • M. McMahan
  • C. McParland
  • W. F. J. Müller
  • D. L. Olson
  • M. D. Partlan
  • N. T. Porile
  • R. Potenza
  • G. Rai
  • J. Rasmussen
  • H. G. Ritter
  • J. Romanski
  • J. L. Romero
  • G. V. Russo
  • H. Sann
  • R. Scharenberg
  • A. Scott
  • Y. Shao
  • B. K. Srivastava
  • T. J. M. Symons
  • C. Tuvé
  • S. Wang
  • P. Warren
  • H. H. Wieman
  • T. Wienold
  • K. Wolf

Abstract

Multifragmentation (MF) is the break-up of colliding nuclei into many species of lighter nuclei, particularly intermediate mass fragments (IMF’s) with 3 ≤ Z IMF ≤ 30 [1]. MF occurs in many different kinds of nuclear reactions when the excitation energy per nucleon is comparable to the nucleon binding energy. At lower excitation energy, a compound nucleus is formed, which decays by evaporation of a few light particles (primarily neutrons, protons, and alphas), leaving a large residual nucleus that contains most of the original mass. At higher energy, the excited system decomposes entirely into light particles. As excitation energy increases, the final mass yields start at low excitation with a double structure peaked at the lowest and highest masses, progress through a power law mass distribution of IMF’s at intermediate excitation, and end at high excitation with an exponential distribution of only light particles. This evolution strongly resembles the progression of a heated fluid from the liquid state through the critical point into the gaseous phase. Since pioneering studies in the early 1980’s [2], intense experimental and theoretical effort has focused on this behavior, attempting to understand the mechanism of MF. Although it is not universally accepted, the idea of a nuclear liquid-gas phase transition has become the leading paradigm used to interpret MF phenomena. Many important questions remain unresolved, including:
  • does MF exhibited by different nuclear reactions have a common underlying physical mechanism?

  • do the excited systems equilibrate sufficiently to apply thermal concepts?

  • is the phase transition first order or continuous, and does this vary for different reactions?

  • what are the thermodynamic properties (e.g. temperature, density, entropy) of these systems?

  • what are the trajectories in the temperature-density plane for various reactions?

  • can the physical properties of nuclear matter, including the equation of state, be extracted from MF data?

Keywords

Critical Exponent Light Particle Time Projection Chamber Continuous Phase Transition Heavy Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. E. Gross, Rep. Progr. Phys. 53, 605 (1990).Google Scholar
  2. 2.
    A. S. Hirsch et al.,Phys. Rev. C29, 508 (1984).Google Scholar
  3. 3.
    H. E. Stanley, “Introduction to Phase Transitions and Critical Phenomena,” Oxford University Press, Oxford, 1971.Google Scholar
  4. A. S. Hirsch et al.,in:,“Proceedings of the 12th Winter Workshop on Nuclear Dynamics,” (this volume), W. Bauer and G. Westfall, eds., Plenum Press, New York, NY, 1996.Google Scholar
  5. N. T. Porile et al.,Phys. Rev. C39, 1914 (1989).Google Scholar
  6. A. M. Poskanzer et al.,Phys. Rev. C3, 882 (1971).Google Scholar
  7. K. Kwiatkowski et al.,Phys. Rev. Lett. 74 3756 (1995).Google Scholar
  8. 8.
    M. L. Gilkes et al., Phys. Rev. Lett. 73 1590 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    J. B. Elliott et aL, submitted to Phys. Lett. B., 1996.Google Scholar
  10. A. Hauger et al.,submitted to Phys. Rev. Lett., 1996.Google Scholar
  11. G. Rai et al.,IEEE Trans. Nucl. Sci. 37 56 (1990).Google Scholar
  12. W. Christie et al.,Nucl. Instr. Methods A255 46 (1987).Google Scholar
  13. 13.
    X. Campi, J. Phys. A19, L917 (1986); Phys. Lett., B208, 351 (1988).Google Scholar
  14. R. W. Minich et al.,Phys. Lett. B118 458 (1982).Google Scholar
  15. K. Summerer et al.,Phys. Rev. C42 1546 (1990).Google Scholar
  16. 16.
    Y. Yariv and Z. Fraenkel, Phys. Rev. C20, 2227 (1979).ADSGoogle Scholar
  17. 17.
    D. Cussol et al., Nucl. Phys. A581, 298 (1993).Google Scholar
  18. R. Wada et al.,Phys. Rev. C39 497 (1989).Google Scholar
  19. K. Hagel et al.,Nucl. Phys. A486 429 (1988).Google Scholar
  20. 20.
    J. P. Bondorf et al., Phys. Rep. 257, 133 (1995).CrossRefGoogle Scholar
  21. 21.
    R. K. Pathria, “Statistical Mechanics,” Pergamon Press, Oxford, 1972.Google Scholar
  22. 22.
    S. Albergo et aL, Nuovo Cimento A89, 1 (1985).ADSGoogle Scholar
  23. J. Pochodzalla et al.,Phys. Rev. Lett. 75 1040 (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • M. L. Tincknell
    • 1
  • S. Albergo
    • 2
  • F. Bieser
    • 3
  • F. P. Brady
    • 4
  • Z. Caccia
    • 2
  • D. A. Cebra
    • 4
  • A. D. Chacon
    • 5
  • J. L. Chance
    • 4
  • Y. Choi
    • 1
  • S. Costa
    • 2
  • J. B. Elliott
    • 1
  • M. L. Gilkes
    • 1
  • J. A. Hauger
    • 1
  • A. S. Hirsch
    • 1
  • E. L. Hjort
    • 1
  • A. Insolia
    • 2
  • M. Justice
    • 6
  • D. Keane
    • 6
  • J. C. Kintner
    • 4
  • V. Lindenstruth
    • 7
  • M. A. Lisa
    • 3
  • U. Lynen
    • 7
  • H. S. Matis
    • 3
  • M. McMahan
    • 3
  • C. McParland
    • 3
  • W. F. J. Müller
    • 7
  • D. L. Olson
    • 3
  • M. D. Partlan
    • 4
  • N. T. Porile
    • 1
  • R. Potenza
    • 2
  • G. Rai
    • 3
  • J. Rasmussen
    • 3
  • H. G. Ritter
    • 3
  • J. Romanski
    • 2
  • J. L. Romero
    • 4
  • G. V. Russo
    • 2
  • H. Sann
    • 7
  • R. Scharenberg
    • 1
  • A. Scott
    • 6
  • Y. Shao
    • 6
  • B. K. Srivastava
    • 1
  • T. J. M. Symons
    • 3
  • C. Tuvé
    • 2
  • S. Wang
    • 6
  • P. Warren
    • 1
  • H. H. Wieman
    • 6
  • T. Wienold
    • 3
  • K. Wolf
    • 5
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Istituto Nazionale di Fisica Nucleare-Sezione di CataniaUniversitá di CataniaCataniaItaly
  3. 3.Nuclear Science Division, Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.University of CaliforniaDavisUSA
  5. 5.Texas A&M UniversityCollege StationUSA
  6. 6.Kent State UniversityKentUSA
  7. 7.GSIDarmstadtGermany

Personalised recommendations