A Study of Nuclear Flow in Consistent Boltzmann Algorithms

  • Gerd Kortemeyer
  • Frank Daffin
  • Wolfgang Bauer

Abstract

One of the still most challenging questions in nuclear physics is that of the equation of state (EOS) of nuclear matter — how does nuclear matter change properties under different temperatures and pressures?[1] Heavy-ion collisions are of great importance in this study; when two large nuclei collide, the nuclear matter is compressed, due to two-body collisions of the nuclear constituents also the temperature rises. Unlike for macroscopic matter, for nuclear matter. this state is unfortunately not directly observable: both the length and the time scale of nuclear collisions prohibit direct observation of nuclear matter while it is still at high temperature and density. Instead, nuclear matter has already cooled down, expanded, and formed more stable configurations before it hits the detectors.

Keywords

Nuclear Matter Nuclear Collision Collision Term Enskog Theory High Energy Nuclear Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czernai, L. P., and Kapusta, J. I., 1986, Entropy and cluster production in nuclear collisions, Phys. Rep. 131: 223;ADSCrossRefGoogle Scholar
  2. Stock, R., 1986, Particle production m high energy nucleus-nucleus collisions, Phys. Rep. 135:259:Google Scholar
  3. Gutbrod, H., et al., 1989, Plastic Ball experiments, Rep. Prog. Phys. 52: 1267.ADSCrossRefGoogle Scholar
  4. 2.
    Westfall, G. D., et al., 1993, Mass dependence of the disappearance of flow in nuclear collisions, Ph,ys. Rev. Lett. 71: 1986.ADSCrossRefGoogle Scholar
  5. 3.
    Das Gupta, S., and Westfall, G. D., 1993, Probing dense nuclear matter in the laboratory, Physics Today 46 (5): 34.CrossRefGoogle Scholar
  6. 4.
    Aichelin, J., 1991, “Quantum” molecular dynamics. A dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202:233;Google Scholar
  7. Feldmeier, H., 1990, Fermionic molecular dynamics, Nucl. Phys. A 515: 147;Google Scholar
  8. Ono, A., et al., 1992, Antisymmetrized version of Molecular Dynamics with two-nucleon collisions and its applications to heavy ion collisions, Prog. of Theoret. Phys. 87: 1185;ADSCrossRefGoogle Scholar
  9. Sorge, H., Stöcker, H., and Greiner, W., 1989, Nuclear collisions at relativistic energies, Nucl. Phys. A 498: 567c;Google Scholar
  10. Sorge, H., Stöcker, H., and Greiner, W., 1989, Poincaré invariant Hamiltonian dynamics, Ann. Phys. 192: 266.ADSMATHCrossRefGoogle Scholar
  11. 5.
    Bertsch, G. F., and Das Gupta, S., 1988, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep. 160: 189;ADSCrossRefGoogle Scholar
  12. Aichelin, J., 1986, Heavy systems at intermediate energies in the Boltzmann-Uehling-Uhlenbeck approach, Phys. Rev. C 33: 537;ADSCrossRefGoogle Scholar
  13. Stöcker, H., and Greiner, W., 1986, High energy heavy ion collisions — probing the equation of state of highly excited hadronic matter, Phys. Rep. 137: 277;ADSCrossRefGoogle Scholar
  14. Mosel, U., 1991, Subthreshold particle productions in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 41: 29;ADSCrossRefGoogle Scholar
  15. Bauer, W., Gelbke, C.-K., and Pratt, S., 1992, Hadronic interferometry in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 42: 77;ADSCrossRefGoogle Scholar
  16. Schuck, P., et al., 1989, Semiclassical and phase space approaches to dynamic and collisional problems of nuclei, Prog. Part. Neel. Phys. 22: 181;ADSCrossRefGoogle Scholar
  17. Pang, Y., Schlagel, T., and Kahana, S. H., 1992, ARC — a relativistic cascade, Nucl. Phys. A 544: 435c;Google Scholar
  18. Kahana, D. E., Keane, D., Pang, Y., Schlagel, T., and Wang, S., 1995, Collective flow from the intranuclear cascade model, Phys. Rev. Lett. 74: 4404.ADSCrossRefGoogle Scholar
  19. 6.
    Bauer, W., Bertsch, G. F., Cassing, W., and Mosel, U., 1986, Energetic photons from intermediate energy proton-and heavy-ion-induced reactions, Phys. Rev. C 34: 2127;ADSCrossRefGoogle Scholar
  20. Bauer, W., 1987, Light particle correlations in heavy ion collisions, Nucl. Phys. A 471: 604;ADSCrossRefGoogle Scholar
  21. Bauer, W., Bertsch, G. F., and Schulz, H., 1992, Bubble and ring formation in nuclear fragmentation, Phys. Rev. Lett. 69: 1888.ADSCrossRefGoogle Scholar
  22. 7.
    Lang, A., Badovsky, H., Cassing, W., Mosel, U., Reusch, H.-G., and Weber, K., 1993, A new treatment of Boltzmann-like collision integrals in nuclear kinetic equations, J. Comp. Phys. 106: 391.ADSMATHGoogle Scholar
  23. 8.
    Danielewicz, P., and Bertsch, G. F., 1992, Production of deuterons and pions in a transport model of energetic heavy-ion collisions, Nucl. Phys. A 533: 712 (Appendix).Google Scholar
  24. 9.
    Alexander, F. J., Garcia, A. L., and Alder, B. J., 1995, A consistent Boltzmann algorithm, Phys. Rev. Lett. 74: 5212.ADSCrossRefGoogle Scholar
  25. 10.
    Résibois, P. M., and De Leener, M., 1977, “Classical Kinetic Theory of Fluids,” p. 156ff, John Wiley Sons, New York.Google Scholar
  26. 11.
    Welke, G., Malflied, R., Grégoire, C., Prakash, M., and Suraud, E., 1989, Collisional relaxation in simulations of heavy-ion collisions using Boltzmann-type equations, Phys. Rev. C 40: 2611ADSCrossRefGoogle Scholar
  27. 12.
    Badovsky, H., 1989, Convergence proof of Nambu’s Boltzmann simulation scheme, Eur. J. Mech., B/Fluids 8: 41.Google Scholar
  28. 13.
    Danielewicz, P., and Pratt, S., 1996, Delays associated with elementary processes in nuclear reaction simulations, Phys. Rev. C, 53: 249ADSCrossRefGoogle Scholar
  29. 14.
    Danielewicz, P., 1995, Effects of compression and collective expansion on particle emission from central heavy-ion reactions, Phys. Rev. C 51: 716.ADSCrossRefGoogle Scholar
  30. 15.
    Gustafson, H. A., et al. (Plastic Ball Collaboration), 1988, Energy and multiplicity dependence of fragment flow in high energy nuclear collisions, Mod. Phys. Lett. A 3: 1323.Google Scholar
  31. 16.
    Partlan, M. D., 1995, et al. (EOS Collaboration), 1995, Fragment flow in Au+Au collisions, Phys. Rev. Lett. 75: 2100.Google Scholar
  32. 17.
    Kakow, D., Welke, G., and Bauer, W., 1993, Nuclear flow excitation function, Phys. Rev. C 48: 1982.ADSCrossRefGoogle Scholar
  33. 18.
    Alm, T., et al., 1995, The in-medium nucleon-nucleon cross section and BUU simulations of heavy-ion reactions, Neel. Phys. A 587: 815.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gerd Kortemeyer
    • 1
  • Frank Daffin
    • 1
  • Wolfgang Bauer
    • 1
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations