Collective Radial Expansion in Au+Au Reactions from 0.25 to 2 Gev/A

  • Frank C. Daffin
  • Kevin Haglin
  • Wolfgang Bauer

Abstract

The expansion of hot, excited nuclear matter formed in collisions of heavy ions is governed by the fundamental forces of nature. In an effort to understand their effects, we have turned to studies of these collisions through observables sensitive to the dynamics they govern. Such observables as collective flow phenomena[1 2, 3, 4, 5, 6, 7, 8] have been used in the past with success. Flow originates when nuclear matter from nucleus-nucleus collisions attains a strongly correlated momentum distribution principally through effective strong interactions.

Keywords

Transverse Momentum Nuclear Matter Critical Radius Radial Flow Momentum Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Danielewicz and G. Odyniec, Transverse Momentum Analysis of Collective Motion in Relativistic Nuclear Collisions, Phys. Lett. 157B . 146, (1985). Google Scholar
  2. 2.
    G. F. Bertsch, W. G. Lynch and M. B. Tsang, Transverse Momentum Distributions in Intermediate Energy Heavy-Ion Collisions, Phys. Lett., 189B, 384, (1987).Google Scholar
  3. 3.
    C. A. Ogilvie, D. A. Cebra, J. Clayton, P. Danielewicz, S. Howden, J. Karn, A. Nadasen, A. Vander Molen, G. D. Westfall, W. K. Wilson, and J. S. Winfield, Transverse Collective Motion in Inermediate-Energy Heavy-Ion Collisions, Phys. Rev. C 40, 2592, (1989).ADSCrossRefGoogle Scholar
  4. 4.
    C. Gale, G. M. Welke, M. Prakash, S. J. Lee, and S. Das Gupta, Transverse Momenta, Nuclear Equation of State, and Momentum-Dependent Interactions in Heavy-Ion Collisions, Phys. Rev. C41, 1545 (1990).ADSGoogle Scholar
  5. 5.
    G. D. Westfall, C. A. Ogilvie, D. A. Cebra, W. K. Wilson, A. Vander Molen, W. Bauer, J. S. Winfield, D. Krofcheck, J. Kam, S. Howden, T. Li, R. Lacey, K. Tyson and M. Cronqvist, Collective Flow, Multi-Fragment Emission and Azimuthal Asymmetries in Intermediate Energy Nucleus-Nucleus Collisions, Nucl. Phys. A519, 141, (1990).CrossRefGoogle Scholar
  6. 6.
    C. A. Ogilvie, W. Bauer, D. A. Cebra, J. Clayton, S. Howden, J. Karn, A. Nadasen, A. Vander Molen, G. D. Westfall, W. K. Wilson and J. S. Winfield, Disappearance of Flow and its Relavance to Nuclear Matter PhysicsPhys. Rev. C 42, R10, (1990).Google Scholar
  7. 7.
    G. D. Westfall, W. Bauer, D. Craig, M. Cronqvist, E. Gualtieri, S. Hannuschke, S. Klakow, T. Li, T. Reposeur, A. M. Vander Molen, W. K. Wilson, J. S. Winfield, J. Yee, S. J. Yenellow, R. Lacey, A. Elmaani, J. Lauret, A. Nadasen and E. Norbeck, Mass Dependence of the Disappearance of Flow in Nuclear Collisions, Phys. Rev. Lett. 71, 1986, (1993).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Lisa, et. al., Radial Flow in Au + Au Collisions at E = (0.25–1.15)A GeV, Phys. Rev. Google Scholar
  9. Lett. 75 2662, (1995).Google Scholar
  10. 9.
    J. Harris, W. Lynch, B. Z-. Convenors, W. Bauer, M. Gyulassy, J. Natowitz, J. S-. Advisors, Report of the Intermediate and High Energy Heavy-Ion Reactions: NSAC/DNP Town Meeting-Brookhaven National Laboratory, January 27–28, 1995.Google Scholar
  11. 10.
    G. F. Bertsch, H. Kruse and S. Das Gupta, Boltzmann Equation for Heavy-Ion Collisions, Phys. Rev. C 29, 673, (1984).ADSCrossRefGoogle Scholar
  12. 11.
    J. Aichelin and G. F. Bertsch, Numerical Simulation of Medium Energy Heavy-Ion Reactions, Phys. Rev. C 31, 1730, (1985).ADSCrossRefGoogle Scholar
  13. 12.
    H. Stöcker and W. Greiner, High Energy Heavy-Ion Collisions: Probing the Equation of State of Highly Excited Hadronic Matter, Phys. Rep. 137, 277, (1986).ADSCrossRefGoogle Scholar
  14. 13.
    G. F. Bertsch and S. Das Gupta, A Guide to Microscopic Model for Intermediate Energy Heavy-Ion Collisions, Phys. Rep. 160, 189 (1988).ADSCrossRefGoogle Scholar
  15. 14.
    V. de la Mota, F. Sebille, M. Farine, B. Remaud, and P. Schuck, Analysis of the Transverse Momentum Collective Motion in Heavy-Ion Collisions, Phys. Rev. C 46, 677, (1991).CrossRefGoogle Scholar
  16. 15.
    W. Bauer, J. P. Bondorf, R. Donangelo, R. Elmér, B. Jakobsson, H. Schulz, F. Schussler, and K. Sneppen, Large Radial Flow in Nucleus-Nucleus Collisions, Phys. Rev. C 47, R1838, (1993).CrossRefGoogle Scholar
  17. 16.
    W. K. Wilson, W. Bauer, C. Cebra, M. Cronqvist, D. Krofchek, R. Lacey, T. Li, A. Nadasen, E. Norbeck, T. Reposeur, A. Vander Molen, C. A. Ogilvie, G. D. Westfall, J. S. Winfeld, and J. Yee, Azimuthal Distributions and Collective Motion in Intermediate Energy Heavy-Ion Collisions, Phys. Rev. C 51, 3136, (1995).ADSCrossRefGoogle Scholar
  18. 17.
    P. J. Siemens, J. O. Rasmussen, Evidence for a Blast Wave from Compressed Nuclear Matter, Phys. Rev. Lett. 42, 880 (1979).CrossRefGoogle Scholar
  19. 18.
    D. Klakow, G. Welke, W. Bauer, Nuclear Flow Excitation Function, Phys. Rev. C 48, 1982, (1993).ADSCrossRefGoogle Scholar
  20. 19.
    T. Alm, G. Röpke, W. Bauer, F. Daffin, M. Schmidt, The In-Medium Nucleon-Nucleon Cross Section and BUU Simulations of Heavy-Ion Reactions, Nucl. Phys. A587, 815, (1995).CrossRefGoogle Scholar
  21. 20.
    J. I. Kapusta, Mechanisms for Deuteron Production in Relativistic Nuclear Collisions, Phys. Rev. C21, 1301, (1980).Google Scholar
  22. 21.
    C. B. Dover, U. Heinz, E. Schnedermann and J. Zimânyi, Covariant Coalescence Model for Relativistically Expanding Systems, Phys. Rev. C 44, 1636, (1991).ADSCrossRefGoogle Scholar
  23. 22.
    W. J. Llope, S. E. Pratt, N. Frazier, R. Pak, D. Craig, E. E. Gualtieri, S. A. Hannuschke, N. T. B. Stone, A. M. Vander Molen, G. D. Westfall, J. Yee, R. A. Lacey, J. Laurent, A. C. Migerey and D. E. Russ, The Fragment Coalescence Model, Phys. Rev. C 52, 2004, (1995).Google Scholar
  24. 23.
    P. Danielewicz and G. F. Bertsch, Production of Deuterons and Pions in a Transport Model of Energetic Heavy-Ion Reactions, Nucl. Phys. A53, 712, (1991).Google Scholar
  25. 24.
    P. Danielewicz, Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions, Phys. Rev. C 51, 716, (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Frank C. Daffin
    • 1
  • Kevin Haglin
    • 1
  • Wolfgang Bauer
    • 1
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations