Spinodal Decomposition of Atomic Nuclei

  • Philippe Chomaz
  • Maria Colonna
  • Alfio Guarnera

Abstract

During the multifragmentation of atomic nuclei it seems that identical (or almost identical) initial conditions are leading to very different partitions of the system in interaction. In such a case it is necessary to develop approaches that are able to describe the observed diversity of the final channels. On the other hand the multifragmentation being characterised by the formation of relatively large fragments, one may think that the mean field plays an important role to organise the system in nuclei. Indeed, the mean field (ie, the long range part of the bare nucleon-nucleon interaction) is at the origin of the cohesion of the clusters. Moreover, it has been shown that extentions of mean-field approaches including a Boltzmann-like collision term were providing excellent descriptions of many aspects of heavy ion reactions around the Fermi energy (see for example ref.[1]and references therein).

Keywords

Spinodal Decomposition Finite System Trial Wave Function Intermediate Mass Fragment Spinodal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.F. Bertsch and S. Das Gupta, Phys. Rep. 160: 190 (1988).CrossRefGoogle Scholar
  2. 2.
    A. Bohr and B. Mottelson, “Nuclear Physics, ” Benjamin N.Y.,(1969).Google Scholar
  3. 3.
    A. Bohr and B. Mottelson, “Nuclear Structure, ” Benjamin N.Y.,(1975).Google Scholar
  4. 4.
    P. Ring and P. Shuck, “The Nuclear Many-body Problem, ” Springer-Verlag N.Y. (1981).Google Scholar
  5. 5.
    M. Colonna and Ph. Chomaz, Phys. Rev. C, C49: 1908 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    M. Colonna, Ph Chomazand J. Randrup, Nuclear Physics A, A567: 637 (1994).Google Scholar
  7. 7.
    S. Ayick, M. Colonna and Ph. Chomaz, Phys. Lett. B, B353: 417 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Fetter and J.D. Walecka, “Quantum Theory of Many Particle Systems,” Mc Graw - Hill, New York (1971).Google Scholar
  9. 9.
    C.J. Pethick and D. G. Ravenhall, Ann. Phys. (New York) 183: 131 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    X.D. Pines-Nozieres, “The Theory of Quantum Liquids,” Addison-Wesley, Reading, MA, (1989).Google Scholar
  11. 11.
    M. Colonna, N. Colonna, A. Bonasera and M. Di ‘Toro, Nucl. Phys. A541: 295 (1992).CrossRefGoogle Scholar
  12. 12.
    A. Guarnera, M. Colonna and Ph. Chomaz, to be published in Phys. Lett. (1996).Google Scholar
  13. 13.
    A. Guarnera, Ph. Chomaz and M. Colonna, to be published.Google Scholar
  14. 14.
    M. Bruno et al., Phys. Lett. B292:251 (1992) and Nucl. Phys. A576: 138 (1994).Google Scholar
  15. 15.
    A. Guarnera, Th. D. Thesis, GANIL, Caen-France, (1996).Google Scholar
  16. 16.
    N. Marie, Ph.D. Thesis, GANIL-T-95–04, Caen-France, (1995).Google Scholar
  17. 17.
    D. Durand private comunication.Google Scholar
  18. 18.
    L.G. Yaffe, Rev. Mod. Phys. 54:407 (1982); S. Drozdz, J. Okolowicz and M. Ploszajcczak, Phys. Lett. 109B:145 (1982); E, Caurier, B. Grammaticos and T. Sami, Phys. Lett. 109B: 150 (1982).ADSGoogle Scholar
  19. 19.
    J. Aichelin and H. Stöcker, Phys. Lett. 176B:14 (1986); H. Feldmeier, Nucl. Phys. A515: 147 (1990).CrossRefGoogle Scholar
  20. 20.
    A. Ono et al, Phys. Rev. Lett. 68: 2898 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    M. Colonna and Ph. Chomaz, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Philippe Chomaz
    • 1
  • Maria Colonna
    • 1
    • 2
  • Alfio Guarnera
    • 1
    • 2
  1. 1.GANIL (DSM/CEA,IN2P3/CNRS)Caen CedexFrance
  2. 2.Viale Andrea DoriaLNSCataniaItaly

Personalised recommendations