Affine Transformations as a Model of Virtual Form Change for Generating Morphospaces

  • Diego Rasskin-Gutman
  • Angela D. Buscalioni
Chapter
Part of the NATO ASI Series book series (NSSA, volume 284)

Abstract

Affine change might be used to seek general patterns of variation or to envisage new ways of describing and evaluating form change. In this paper, we assume a theoretical perspective and show a strategy for generating affine morphospaces (ordered collections of affine-transformed images of a base form), by means of a new computer program called D’ARCYGRAPH. We propose the use of affine transformations as models of change that might induce the search for new explanations based on the constraints imposed by the properties of affine change, that is, their invariants.

We introduce a technique to elaborate affine morphospaces; as an example, we build the morphospace of pelvic girdles generated by using as a base form the pelvis of Deinonychus antirrhopus (Dinosauria, Theropoda). We explore possible transformation paths from this base form, which is considered to be the closest sister group of the major clade Ayes. A discussion of the type of variables (called “dispositionals”) that can be used and explained by the affine model is provided. We conclude that it is possible to build an affine trend that simulates the fossil record transition, Theropoda—Aves, according to these dispositional variables.

Also, we introduce an interactive strategy for the superimposition of forms, without any automatic optimality criteria. A comparison with other superimposition methods, based on tridactyl dinosaur footprints is discussed.

Keywords

Base Form Affine Transformation Form Change Pelvic Girdle Affine Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, R. H. 1982. Deformation, Da Vinci’s concept of form, and the analysis of events in evolutionary history. In: E. M. Gallitelli, (ed.), Paleontology, essentials of historical geology. S.T.E.M. Mucchi: Modena, Italy. Pages 241–277.Google Scholar
  2. Benson, R. H., R. E. Chapman, and A. F. Siegel. 1982. On the measurement of morphology and its change. Paleobiology 8 (4): 328–339.Google Scholar
  3. Bookstein, F. L. 1977. The study of shape transformation after D’Arcy Thompson. Mathematical Biosciences 34: 177–219.CrossRefGoogle Scholar
  4. Bookstein, F. L. 1990. Higher-order features of shape change for landmark data. In: F. J. Rohlf. and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2. Pages 237–250.Google Scholar
  5. Bookstein, F. L. 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.Google Scholar
  6. Bookstein, F. L. 1993. A brief history of the morphometric synthesis. In: L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid. Pages 15–40.Google Scholar
  7. Carroll, R. L. 1988. Vertebrate paleontology and evolution. Freeman and Company: San Francisco.Google Scholar
  8. Cracraft, J. 1988. The major clades of birds. In: M. J. Benton, (ed.), The phylogeny and classification of the tetrapods, Volume I. Clarendon Press: Oxford. Pages 339–362Google Scholar
  9. Chapman, R. E. 1990. Conventional Procrustes approaches. In: F. J. Rohlf. and F. L. Bookstein (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2. Pages 251–267Google Scholar
  10. Gatesy, F. G. 1990. Caudophemoral musculature and the evolution of theropod locomotion. Paleobiology 16 (2): 170–186.Google Scholar
  11. Goodall, C. R. and P. B. Green. 1986. Quantitative analysis of surface growth. Botanical Gazette 147 (1): 1–15.CrossRefGoogle Scholar
  12. Gordon, A. D. 1981. Classification. Chapman and Hall: London.Google Scholar
  13. Novas, F. 1992. La evolución de los dinosaurios carnivoros. In: J. L. Sanz and A. D. Buscalioni, (eds.), Los dinosaurios y su entorno biótico. Actas del Segundo Curso de Paleontoloía en Cuenca, Instituto “Juan de Valdés.” Ayto. de Cuenca, Spain. Pages 126–163Google Scholar
  14. Ostrom, J. H. 1976. On a new specimen of the Lower Cretaceous theropod dinosaur Deinonychus antirrhopus. Breviora 439: 1–21.Google Scholar
  15. Preparata, F. P. and M. I. Samos. 1985. Computational Geometry. An introduction. Springer-Verlag: New York.CrossRefGoogle Scholar
  16. Rasskin-Gutman, D. and A. D. Buscalioni. 1992. D’ARCYGRAPH. Primeros resultados: estudio de la deformación afin en la pelvis de Deinonychus antirrhopus. In: VII Jornadas de Paleontologia, Restimenes, November, Barcelona, Spain. Pages 133–135.Google Scholar
  17. Rasskin-Gutman, D., A. D. Buscalioni, and J. J. Moratalla. 1993. Theoretical morphospaces of tridactyl dinosaur footprints using D’ARCYGRAPH. Evolutionary implications. Page 364 In: Evolution 93, IVth Congress of the European Society for Evolutionary Biology, 22–28 August, Montpellier, France.Google Scholar
  18. Raup, D. M. 1966. Geometric analysis of shell coiling: General problems. Journal of Paleontology 40: 1178–1190.Google Scholar
  19. Raup, D. M. and S. M. Stanley. 1978. Principles of paleontology. W. H. Freeman and Company: San Francisco.Google Scholar
  20. Reyment, R. A. 1991. Multidimensional palaeobiology. Pergamon Press: Oxford.Google Scholar
  21. Rohlf, F. J., and D. E. Slice. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.CrossRefGoogle Scholar
  22. Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8 (4): 129–132.CrossRefGoogle Scholar
  23. Scott-Ram, N. R. 1990. Transformed cladistics, taxonomy and evolution. Cambridge University Press: Cambridge..CrossRefGoogle Scholar
  24. Seilacher, A. 1991. Self-organizing mechanisms in morphogenesis and evolution. In: N. Schmidt-Kittler, and K. Vogel (eds.), Constructional morphology and evolution, Spinger-Verlag: New York. Pages. 251–271.CrossRefGoogle Scholar
  25. Sereno, P. C., and C. H. Rao. 1992. Early evolution of avian flight and perching: New evidence from the Lower Cretaceous of China. Science 255: 845–848.PubMedCrossRefGoogle Scholar
  26. Siegel, A. F., and R. H. Benson. 1982. A robust comparison of biological shapes. Biometrics 38: 341–350.PubMedCrossRefGoogle Scholar
  27. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical taxonomy. Freeman and Company: San Francisco.Google Scholar
  28. Thompson, D. W. 1942. On growth and Form. Cambridge University Press: London. (From the Unabridged Dover (1992) republication of the complete revised edition of 1942. First edition, 1917.)Google Scholar
  29. Tobler, W. R. 1978. Comparison of plane forms. Geographical Analysis 10 (2): 154–162.CrossRefGoogle Scholar
  30. Wellnhofer, P. 1985. Remarks on the digit and pubis problems of Archaeopteryx. In: M. K. Hecht et al. (eds.), The Beginnings of birds. Proceedings of the International Archaeopteryx Conference, Eichstätt, 1984. Pages 113–122.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Diego Rasskin-Gutman
    • 1
  • Angela D. Buscalioni
    • 1
  1. 1.Unidad de Paleontología, B-101 Departamento de BiologíaFacultad de Ciencias Universidad Autónoma de MadridCantoblancoSpain

Personalised recommendations