Molecular Biology of Nematode Resistance in Tomato

  • Valerie M. Williamson
  • Kris N. Lambert
  • Isgouhi Kaloshian
Part of the NATO ASI Series book series (NSSA, volume 268)

Abstract

Tomato, Lycopersicon esculentum, is a host for several species of root-knot nematodes, and nematode infestation can result in severe yield loss for this crop. The Mi gene of tomato confers effective resistance to three root-knot nematode species, Meloidogyne incognita, M. javanica and M. arenaria, but not to a fourth, M. hapla (Gilbert and McGuire, 1956; Braham and Winsted, 1957; Roberts and Thomason, 1986). Mi was introduced into tomato from the wild species Lycopersicon peruvianum using embryo rescue of an interspecific cross of this wild species with L. esculentum (Smith, 1944). Progeny of a single F1 plant are the sole source of nematode resistance in currently available fresh-market and processing tomato cultivars (Medina-Filho and Tanksley, 1983). Recent restrictions on the use of nematicides have increased reliance on the gene Mi for nematode control in tomato.

Keywords

Resistance Response Plant Parasitic Nematode Nematode Infection Yeast Artificial Chromosome Nematode Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and Ryals, J., 1993, Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a, Proc. Natl. Acad. Sci. USA 90:7327.PubMedCrossRefGoogle Scholar
  2. Bernatzky, R., and Tanksley, S.D., 1986, Majority of random cDNA clones correspond to single loci in the tomato genome, Mol. Gen. Genet. 203:8.CrossRefGoogle Scholar
  3. Bost, S.C., and Triantaphyllou, A.C., 1987, Genetic basis of the epidemiological effects of resistance to Meloidogyne incognita in the tomato cultivar Small Fry, J. Nematol. 44:540.Google Scholar
  4. Bowles, D.J., 1990, Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873.PubMedCrossRefGoogle Scholar
  5. Braham, W.S., and Winstead, N.N., 1957, Inheritance of resistance to root-knot nematodes in tomatoes, Proc. Am. Soc. Hort. Sci. 69:372.Google Scholar
  6. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R., 1991, Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani, Science 254:1194.PubMedCrossRefGoogle Scholar
  7. Brueske, C.H., 1980, Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the rootknot nematode, Meloidogyne incognita, Physiol. Plant Path. 16:409.Google Scholar
  8. Dalmasso, A., Castagnone-Sereno, P., Bongiovanni, M., and deJong, A., 1991, Acquired virulence in the plant parasitic nematode, Meloidogyne incognita. 2. Two-dimensional analysis of isogenic isolates, Revue Nematol. 14:277.Google Scholar
  9. De Loose, M., Gheysen, G., Tire, T., Gielen, J., Villarroel, R., Genetello, C., Van Montagu, M., Depicker, A., and Inze, D., 1991, The extensin signal pepetide allows secretion of a heterologous protein from protoplasts, Gene 90:95.CrossRefGoogle Scholar
  10. Dropkin, V.H., 1969, The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature, Phytopathology 59:1632.Google Scholar
  11. Dropkin, V.H., Helgeson, J.P., and Upper, C.D., 1969, The hypersensitivity reaction of tomatoes resistant to Meloidogyne incognita: reversal by cytokinins, J. Nematol. 1:55.PubMedGoogle Scholar
  12. Frazier, W.A., and Dennett, R.K., 1949, Isolation of Lycopersicon esculentum type tomato lines essentially homozygous resistant to root-knot, Proc. Am. Soc. Hort. Sci. 54:225.Google Scholar
  13. Gasser, C.S., Gunning, D.A., Budelier, K.A., and Brown, S.M., 1990, Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli, Proc. Natl. Acad. Sci. USA 87:8519.Google Scholar
  14. Gilbert, J.C. and McGuire, D.C., 1956, Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial-type tomatoes, Proc. Am. Soc. Hort. Sci. 63:437.Google Scholar
  15. Hammond-Kosack, K.E., Atkinson, H.J., and Bowles, D.J., 1990, Changes in abundance of translatable mRNA species in potato roots and leaves following root invasion by cyst nematode G. rhostochiensis pathotypes, Physiol. Molec. Plant Path. 3:339.CrossRefGoogle Scholar
  16. Helentjaris, T., Slocum, M., Wright, S., Schaefer, A., and Nienhuis, J., 1986, Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms, Theor. appl. Genet. 72:761.CrossRefGoogle Scholar
  17. Ho, J.Y., Weide, R., Ma, H., van Wordragen, M.F., Lambert, K.N., Koornneef, M., Zabel, P., and Williamson, V.M., 1992, The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes, The Plant Journal 2:971PubMedGoogle Scholar
  18. Huang, C.S., 1985, Formation, anatomy and physiology of giant cells induced by root-knot nematodes, in: “An Advanced Treatise on Meloidogyne,” Vol.1, J.N. Sasser, and Carter, C.C., eds., North Carolina State University Graphics, Raleigh, N. C.Google Scholar
  19. Hussey, R.S., 1985, Host-parasite relationships and associated physiological changes, in: “An Advanced Treatise on Meloidogyne,” Vol.1, J.N. Sasser, and Carter, C.C., eds., North Carolina State University Graphics, Raleigh, N. C.Google Scholar
  20. Jarquin-Barberena, H., Dalmasso, A., deGuiran, G., and Cardin, M.-C., 1991, Acquired virulence in the plant parasitic nematode Meloidogyne incognita. 1. Biological analysis of the phenomenon, Revue Nematol. 14:261.Google Scholar
  21. Lambert, K.N., Tedford, E.C., Caswell, E.P., and Williamson, V.M., 1992, A system for continuous production of root-knot nematode juveniles in hydroponic culture, Phytopathology 82:512.CrossRefGoogle Scholar
  22. Lambert, K.N., and Williamson, V.M., 1993, cDNA library construction from small amounts of RNA using paramagnetic beads and PCR, Nucleic Acids Res. 21:775.PubMedCrossRefGoogle Scholar
  23. Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., and Tanksley, S.D., 1993, Map-based cloning of a protein kinase gene conferring disease resistance in tomato, Science 262:1432.PubMedCrossRefGoogle Scholar
  24. Martin, G.B., Ganal, S. D., and Tanksley, S. D., 1992, Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci, Mol. Gen. Genet. 233:25.PubMedCrossRefGoogle Scholar
  25. Medina-Filho, H., and Tanksley, S.D., 1983, Breeding for nematode resistance, in “Handbook of Plant Cell Culture,” Vol. 1, D.A. Evans, Sharp, W. R., Ammirato, P.V., and Yamada, Y., eds., Macmillan, New York.Google Scholar
  26. Messeguer, R., Ganal, M., de Vicente, M.C., Young, N.D., Bolkan, H., and Tanksley, S.D., 1991, High-resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato, Theor. appl. Genet. 82:529.CrossRefGoogle Scholar
  27. Miller, J.C., and Tanksley, S.D., 1990, RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon, Theor. appl. Genet. 80:437.Google Scholar
  28. Paulson, R.E., and Webster, J.M., 1972, Ultrastructure of the hypersensitive reaction in roots of tomato, Lycopersicon esculentum L., to infection by the root-knot nematode, Meloidogyne incognita, Pysiol. Plant Path. 2:227.CrossRefGoogle Scholar
  29. Putterill, J., Robson, F., Lee, K., and Coupland, G., 1993, Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region containing the flowering-time gene CO, Mol. Gen. Genet. 239:145.Google Scholar
  30. Rick, C.M., and Yoder, J.I., 1988, Classical and molecular genetics of tomato: highlights and perspectives, Annu. Rev. Genet. 22:281.PubMedCrossRefGoogle Scholar
  31. Riggs, R.D., and Winstead, N.N., 1959, Studies on resistance in tomato to root-knot nematodes and on the occurence of pathogenic biotypes, Phytopathology 49:716.Google Scholar
  32. Roberts, P.A., and Thomason, I.J., 1986, Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes, Plant Disease 70:547.CrossRefGoogle Scholar
  33. Ryan, C.A., 1990, Protease inhibitors in plants: genes for improving defenses against insects and pathogens, Annu. Rev. Phytpathol. 28:425.CrossRefGoogle Scholar
  34. Smith, P.G., 1944, Embryo culture of a tomato species hybrid, Proc. Am. Soc. Hortic. Sci. 44:413.Google Scholar
  35. Stoker, A.W., 1990, Cloning of PCR products after defined cohesive termini are created with T4 DNA polymerase, Nucleic Acids Res. 18:4290.PubMedCrossRefGoogle Scholar
  36. Tanksley, S.D., Ganal, M.W., Prince, J.P., de Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Roder, M.S., Wing, R.A., Wu, R.A., Wu, W., and Young, N.D., 1992, High density molecular linkage maps of the tomato and potato genomes, Genetics 132:1141.PubMedGoogle Scholar
  37. Theerasilp, S., Hitotsuya, H., Nakajo, S., Nakaya, K., Nakamura, Y., and Kurihara, Y., 1989, Complete amino acid sequence and structure characterization of the taste- modifying protein, miraculin, J. Biol. Chem. 264:6655.PubMedGoogle Scholar
  38. Trudgill, D.L., 1991, Resistance to and tolerance of plant parasitic nematodes in plants, Annu. Rev. Phytopathol. 29:167.CrossRefGoogle Scholar
  39. van Daelen, R.A.J., Jonkers, J.J., and Zabel, P., 1989, Preparation of megabase-sized tomato DNA and separation of large restriction fragments by field inversion gel electrophoresis (FIGE), Plant Molec. Biol. 12:341.CrossRefGoogle Scholar
  40. Williams, G.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingy, S.V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18:6531.PubMedCrossRefGoogle Scholar
  41. Williamson, V.M., Ho, J.-Y., Wu, F.F., Miller, N., and Kaloshian, I., 1994, A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato, Theor. appl. Genet., in press.Google Scholar
  42. Wing, R.A., Rastogi, V.K., Zhang, H.B., Paterson, A.H., and Tanksley, S.D., 1993, An improved method of plant megabase DNA isolation in agarose microbeads suitable for physical mapping and YAC cloning, Plant Journal 4:893.PubMedCrossRefGoogle Scholar
  43. Ye, Z.-H., andVarner, J.E., 1991, Tissue-specific expression of cell wall proteins in developing soybean tissues, The Plant Cell 3:23.PubMedGoogle Scholar
  44. Zabel, P., van Wordragen, M., Weide, R., Liharska, T., Stam, P., and Koornneef, M., 1993, Integration of the classical and molecular linkage maps of tomato chromosome 6, Genetics 135:1175.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Valerie M. Williamson
    • 1
  • Kris N. Lambert
    • 1
  • Isgouhi Kaloshian
    • 1
  1. 1.Department of NematologyUniversity of CaliforniaDavisUSA

Personalised recommendations