Repetitive DNA in Plant-Parasitic Nematodes: Use for Interspecific and Intraspecific Identification

  • Pierre Abad
Part of the NATO ASI Series book series (NSSA, volume 268)

Abstract

Plant parasitic nematodes are serious damaging pests in many economically important crops, affecting both yield and quality of harvests. Meloidogyne, Globodera and Heterodera genera have the most cosmopolitan distribution and destructive effects on virtually all crop plants (Hyman and Powers, 1991). Accurate and reliable identification of plant parasitic nematodes is necessary for many aspects of their control and management. Therefore, attempts have been made to distinguish between nematode species and pathotypes. However, difficulties have arisen with respect to the precise identity of some isolates of these nematodes and thus, although nematode identification is extremely important, it is nevertheless a difficult task.

Keywords

Nematode Species Tandem Array Ascaris Lumbricoides Potato Cyst Nematode Satellite Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeby, P., Spicher, A., De Chastonay, Y., Müller, F., and Tobler, H., 1986, Structure and genomic organization of provirus-like elements partially eliminated from the somatic genome of Ascaris lumbricoides, EMBO J. 5: 3353.Google Scholar
  2. Bachmann, L., Raab, M., and Sperlich, D., 1989, Satellite DNA and speciation. A species specific satellite DNA of Drosophila guanche, Z. Zool. Syst. Evol.-Forsch 27: 84.CrossRefGoogle Scholar
  3. Bakker, J., and Bouwman-Smits, L., 1988, Contrasting rates of protein and morphological evolution in cyst nematode species, Phytopathology 78: 900.CrossRefGoogle Scholar
  4. Beridze, T.G., 1986, Satellite DNAs. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  5. Bolla, R.I., Weaver, C., and Winter, R.E.K., 1988, Genomic differences among pathotypes of Bursaphelenchus xylophilus, J. Nematol. 20: 309.Google Scholar
  6. Bostock, C., 1980, A function for satellite DNA?, Trends Biochem. Sei. 5: 117.CrossRefGoogle Scholar
  7. Boveri, T., 1887, Ueber Differenzierung der zeilkerne Während der Furchung des Eies von Ascaris megacephala, Anat. Am. 2: 688.Google Scholar
  8. Brutlag, D.L., 1980, Molecular arrangement and evolution of heterochomatic DNA, Annu. Rev. Genet. 14: 121.PubMedCrossRefGoogle Scholar
  9. Brutlag, D.L., and Peacock, W.J., 1979, DNA sequences of the 1.672 g cm-3 satellite of Drosophila melanogaster, J. Mol. Biol. 135: 565.CrossRefGoogle Scholar
  10. Burrows, P.R., 1988, The differentiation of Globodera pallida from G. rostochiensis using species-specific DNA probes, Nematologica (Abstract. European Society of Nematologists Meeting, Uppsala, Sweden, August 1988) 34: 260.Google Scholar
  11. Burrows, P.R., and Boffey, S.A., 1986, A technique for the extraction and restriction endonuclease digestion of total DNA from Globodera rostochiensis and G. pallida second stage juveniles, Revue Nematol. 9:199.Google Scholar
  12. Burrows, P.R., and Perry, R.N., 1988, Two cloned DNA fragments which differentiate Globodera pallida from G. rostochiensis, Revue Nematol. 11: 441.Google Scholar
  13. Castagnone-Sereno, P., Piotte, C., Abad, P., Bongiovanni, M., and Dalmasso, A., 1991, Isolation of a repeated DNA probe showing polymorphism among Meloidogyne incognita populations, J. Nematol. 23: 316.PubMedGoogle Scholar
  14. Castagnone-Sereno, P., Piotte, C., Uijthof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., and Dalmasso, A., 1993, Phylogenetic relationships between amphimictic and parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis, Heredity 70: 195.CrossRefGoogle Scholar
  15. Cenis, J.L., 1993, Identification of four major Meloidogyne spp. by random amplified polymorphic DNA (RAPD-PCR), Phytopathology 83: 76.CrossRefGoogle Scholar
  16. Curran, J., Baillie, D.L., and Webster, J.M., 1985, Use of genomic DNA restriction fragment length differences to identify nematodes species, Parasitology 90: 137.CrossRefGoogle Scholar
  17. Curran, J., Mc Clure, M.A., and Webster, J.M., 1986, Genotypic differenciation of Meloidogyne populations by detection of restriction fragment length polymorphism in total DNA, J. Nematol. 18: 83.PubMedGoogle Scholar
  18. Curran, J., and Webster, J.M., 1987, Identification of nematodes using restriction fragment length difference on species specific probes, Can. J. Plant Pathol. 9: 162.CrossRefGoogle Scholar
  19. Dalmasso, A., and Bergé, J.B., 1983, Enzyme polymorphism and the concept of parthenogenetic species, exemplified by Meloidogyne, In : “Concepts in nematodes systematics”, A.R., Stone, Platt, H.M., and Khalil, L.F., eds., Academic Press, London and New York.Google Scholar
  20. Datta, U., Dutta, P., and Mandai, R.K., 1988, Cloning and characterization of a highly repetitive fish nucleotide sequence, Gene 62: 331.PubMedCrossRefGoogle Scholar
  21. Davis, C.A., and Wyatt, G.R., 1989, Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor, Nucleic Acid Res. 17: 5579.CrossRefGoogle Scholar
  22. De Chastonay, Y., Müller, F., and Tobler, H., 1990, Two highly reiterated nucleotide sequences in the low C-value genome of Panagrellus redivivus, Gene 93: 199.Google Scholar
  23. De Guiran, G., and Bruguier, N., 1989, Hybridization and phylogeny of the pine wood nematodes (Bursaphelenchus spp.), Nematologica 35: 321.CrossRefGoogle Scholar
  24. Dejong, A.J., Bakker, J., Roos, M., and Gommers, F.J., 1989, Repetitive DNA and hybridization patterns demonstrate extensive variability between the sibling species Globodera rostochiensis and G. pallida, Parasitology 99: 133.CrossRefGoogle Scholar
  25. Emmons, S.W., Rosenzweig, B., and Hirsch, D., 1980, Arrangement of repeated sequences in the DNA of the nematode Caenorhabditis elegans, J. Mol. Biol. 144: 481.CrossRefGoogle Scholar
  26. Etter, A., Aboutanos, M., Tobler, H., and Müller, F., 1991, Eliminated chromatin of Ascaris contains a gene that encodes a putative ribosomal protein, Proc. Natl. Acad. Sci. USA 88: 1593.PubMedCrossRefGoogle Scholar
  27. Files, J.G., and Hirsh, D., 1981, Ribosomal DNA of Caenorhabditis elegans, J. Mol. Biol. 149: 223.PubMedCrossRefGoogle Scholar
  28. Forejt, J., 1973, Centrometric heterochromatin polymorphism in the house mouse, Chromosoma 43 : 187.PubMedCrossRefGoogle Scholar
  29. Fowler, R.F., and Skinner, D.M., 1985, Cryptic satellites rich in inverted repeats comprise 30% of the genome of a hermit crab, J. Biol. Chem. 260: 1296.PubMedGoogle Scholar
  30. Fowler, J.C.S., Skinner, J.D., Burgoyne, L.A., and Drinkwater, R.D., 1989, Satellite DNA and higher-primate phylogeny, Mol. Biol. Evol. 6: 553.PubMedGoogle Scholar
  31. Harmey, J., and Harmey, M.A., 1993, Detection and identification of Bursaphelenchus species with DNA fingerprinting and Polymerase Chain Reaction, J. Nematol. 25: 406.PubMedGoogle Scholar
  32. Hsieh, T.S., and Brutlag, D., 1979, Sequence and sequence variation within 1.688 g/cm3 satellite DNA of Drosophila melanogaster, J. Mol. Biol. 135: 465.PubMedCrossRefGoogle Scholar
  33. Hussey, R.S., 1979, Biochemical systematics of nematodes2014;a review, Helminth. Abstr. Ser. B Plant Nematol. 48: 141.Google Scholar
  34. Hyman, B.C., and Powers, T.O., 1991, Integration of molecular data with systematic of plant parasitic nematodes, Ann. Rev. Phytopathol. 29: 98.CrossRefGoogle Scholar
  35. Jelinek, W.R., and Schmid, C.W., 1982, Repetitive sequences in eukaryotic DNA and their expression, Ann. Rev. Biochem. 51: 813.PubMedCrossRefGoogle Scholar
  36. John, B., and Miklos, G.L.G., 1979, Functionnal aspects of satellite DNA and heterochomatin, Int. Rev. Cytol. 58: 1.PubMedCrossRefGoogle Scholar
  37. Kalinski, A., and Huettel, R.N., 1988, DNA restriction fragment length polymorphism in races of the soybean cyst nematode, Heterodera glycines, J. Nematol. 20: 532.Google Scholar
  38. La Volpe, A., Ciaramella, M., and Bazzicapulo, P., 1988, Structure, evolution and properties of a novel repetitive DNA family in Caenorhabditis elegans, Nucleic Acid Res. 16: 8213.PubMedCrossRefGoogle Scholar
  39. MacKay, R.D.G., Bobrow, M., and Cooke, H.J., 1978, The identification of a repeated DNA sequence involved in the karyotype polymorphism of the human Y chromosome, Cytogenet. Cell. Genet. 21: 19.CrossRefGoogle Scholar
  40. Miklos, G.L.G., 1985, Sequencing and manipulating repeated DNA, In : “Molecular Evolutionnary Genetics”, R.J., Mc Intyre, ed., Plenum, New York.Google Scholar
  41. Moritz, K.B., and Roth, G.E., 1976, Complexity of germline and somatic DNA in Ascaris, Nature 259: 55.PubMedCrossRefGoogle Scholar
  42. Müller, F., Walker, P., Aeby, P., Neuhaus, H., Felder, H., Back, E., and Tobler, H., 1982, Nucleotide sequence of satellite DNA contained in the eliminated genome of Ascaris lumbricoides, Nucleic Acid Res. 10: 7493.PubMedCrossRefGoogle Scholar
  43. Novak, U., 1984, Structure and properties of a highly repetitive DNA sequence in sheep, Nucleic Acids Res. 12: 2343.PubMedCrossRefGoogle Scholar
  44. Pableo, E.C., and Triantaphyllou, A.C., 1989, DNA complexity of the root-knot nematode (Meloidogyne spp.) genome, J. Nematol. 21: 260.PubMedGoogle Scholar
  45. Pech, M., Streeck, R.E., and Zachau, H.G., 1979, Patchwork structure of a bovine satellite DNA, Cell. 19: 765.Google Scholar
  46. Piotte C., 1993, Organisation du génome chez les nematodes phytoparasites du genre Meloidogyne : étude de la fraction répétée et utilisation en typage moléculaire et phylogénie, Thèse de l’Université de Paris 6, France.Google Scholar
  47. Piotte, C., Castagnone-Sereno, C., Bongiovanni, M., Dalmasso, A., and Abad, P., 1994, Cloning and characterization of two satellite DNAs in the low C-value genome of the nematode Meloidogyne spp, Gene (in Press).Google Scholar
  48. Piotte, C., Castagnone-Sereno, P., Uijthof, J., Abad, P., Bongiovanni, M., and Dalmasso, A., 1992, Molecular characterization of species and populations of Meloidogyne from various geographic origins with repeated-DNA homologous probes, Fundam. Appl. Nematol. 15: 271.Google Scholar
  49. Pruitt, R.E., and Meyerowitz, E.M., 1986, Characterization of the genome of Arabidopsis thaliana, J. Mol. Biol. 187: 169.PubMedCrossRefGoogle Scholar
  50. Ruiz-Lara, S., Prats, E., Sainz, J., and Cornudella, L., 1992, Cloning and characterization of a highly concerved satellite DNA from the mollusc Mytilus edulis, Gene 117: 237.PubMedGoogle Scholar
  51. Sainz, J., Azorin, F., Cornudella, L., 1989, Detection and molecular cloning of highly repeated DNA in the sea cucumber sperm, Gene 80: 57.PubMedCrossRefGoogle Scholar
  52. Sealy, L., Hartley, J., Donelson, J., Chalkley, R., Hutchinson, N., and Hamkalo, B., 1981, Characterization of a highly repetitive sequence DNA family in rat, J. Mol. Biol. 145: 291.PubMedCrossRefGoogle Scholar
  53. Skinner, D.M., 1977, Satellite DNAs, Bioscience 27: 790.CrossRefGoogle Scholar
  54. Southern, E.M., 1975, Detection of specific sequence among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 90: 503.CrossRefGoogle Scholar
  55. Stratford, R., Shields, R., Goldsbrough, A., and Fleming, C., 1992, Analysis of repetitive DNA sequences from potato cyst nematode and their use as diagnostic probes, Phytopathology 82: 881.CrossRefGoogle Scholar
  56. Sulston, J.E., and Brenner, S., 1974, The DNA of Caenorhabditis elegans, Genetics 77: 95.PubMedGoogle Scholar
  57. Tarès, S., Abad, P., Bruguier, N., and De Guiran, G., 1992, Identification and evidence for relationships among geographical isolates of Bursaphelenchus spp. (Pinewood nematode) using homologous DNA probes, Heredity 68: 157.CrossRefGoogle Scholar
  58. Tarès, S., Lemontey, J.M., De Guiran, G., and Abad, P., 1993, Cloning and characterization of a highly conserved satellite DNA sequence specific for the phytoparasitic nematode Bursaphelenchus xylophilus, Gene 129: 269.Google Scholar
  59. Tarès, S., Lemontey, J.M., De Guiran, G., and Abad, P., 1994, Use of species-specific satellite DNA from Bursaphelenchus xylophilus as a diagnostic probe, Phytopathology (in Press).Google Scholar
  60. Tobler, H., 1986, The differentiation of germ and somatic cell lines in nematodes. Results and problems in cell differentiation, In “Germ line-soma differentiation”, W. Hennig, ed., Heidelberg, Springer-Verlag.Google Scholar
  61. Tobler, H., Smith, K.D., and Ursprung, H., 1972, Molecular aspects of chromatin elimination in Ascaris lumbricoides, Dev. Biol. 27: 190.PubMedCrossRefGoogle Scholar
  62. Uitterlinden, A.G., Slagboom E.P., Johnson T.E., and Vijg, J., 1989, The Caenorhabditis elegans genome contains monomorphic minisatellites and simple sequences, Nucleic Acid Res. 17: 9527.PubMedCrossRefGoogle Scholar
  63. Vahidi, H., Purac, A., Le Blanc, J.M., and Honda, B.M., 1991, Characterization of potentially functional 5S rRNA-encoding genes within ribosomal DNA repeats of the nematode Meloidogyne arenaria, Gene 108: 281.PubMedCrossRefGoogle Scholar
  64. Vignali, R., Rijli, F.M., Batistoni, R., Fratta, D., Cremisi, F., and Barsacchi, G., 1991, Two dispersed highly repeated DNA families of Triturus vulgaris meridionalis (Amphibia, Urodela) are widely conserved among Salamandridae, Chromosoma 100: 87.PubMedCrossRefGoogle Scholar
  65. Webster, J.M., Anderson, R.V., Baillie, D.L., Beckenbach, K., Curran, J., and Rutherford, T.A., 1990, DNA probes for differentiating isolates of the pinewood nematode species complex, Revue Nematol. 13: 255.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Pierre Abad
    • 1
  1. 1.Laboratoire de Biologie des InvertébrésI.N.R.A.Antibes CedexFrance

Personalised recommendations