Hebbian Covariance Learning

A Nexus for Respiratory Variability, Memory, and Optimization?
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 450)

Abstract

Respiration is a vital autonomic function that is characterized by an almost unwavering ability to maintain homeostatic blood gas and pH levels in the face of profound physiological and environmental challenges. This remarkable behavior has led many researchers to assume that respiratory control is a reflexogenic process whose sole purpose is simply to maintain nominal body gas and pH tones. While this model has born some insight into certain aspects of the respiratory system, it fails to account for more complex behaviors of the system that have been increasingly recognized.

Keywords

Synaptic Plasticity Respiratory System Synaptic Weight Ventilation Rate Respiratory Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrian, E. D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. (London), 79: 332–58, 1933.Google Scholar
  2. 2.
    Åström, K. J., and B. Wittenmark. Adaptive Control. Addison-Wesley Publishing Company, Inc., New York, 1995.Google Scholar
  3. 3.
    Bach, K. B., and G. S. Mitchell. Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respir. Pysiol., 104: 251–60, 1996.CrossRefGoogle Scholar
  4. 4.
    Baudry, M., R. F. Thompson, and J. L. Davis. Synaptic plasticity: molecular, cellular, and functional aspects. MIT Press, Cambridge, MA, 1993.Google Scholar
  5. 5.
    Biscoe, T. J., and M. J. Purves. Observations on the rhythmic variation in the cat carotid body chemorecep-tor activity which has the same period as respiration. J. Physiol. (London), 190: 389–93, 1967.Google Scholar
  6. 6.
    Bisgard, G. E., and J. A. Neubauer. Peripheral and central effects of hypoxia. In A. Dempsey and A. I. Pack, editors, Regulation of Breathing, Ed 2. II. Lung biology in health and disease, volume 79, pages 617–668. Dekker, New York, 1995.Google Scholar
  7. 7.
    Bliss, T. V. P., and T. Lømo. Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol., 232: 331–335, 1973.PubMedGoogle Scholar
  8. 8.
    Brown, T. H., P. F. Chapman, E. W. Kairiss, and C. L. Keenan. Long-term synaptic potentiation. Science, 242: 724–728, 1988.CrossRefPubMedGoogle Scholar
  9. 9.
    Byrne, J. H. Cellular analysis of associative learning. Physiol. Rev., 67: 329–439, 1987.PubMedGoogle Scholar
  10. 10.
    Carlson, A. Anti-Hebbian learning in a non-linear neural network. Biol. Cybern., 64: 171–6, 1990.CrossRefPubMedGoogle Scholar
  11. 11.
    Dan, Y., and M. M. Poo. Hebbian depression in isolated muscular synapses in vitro. Science, 256: 1570–3, 1992.CrossRefPubMedGoogle Scholar
  12. 12.
    Eldridge, F. L., and D. E. Millhorn. Oscillation, gating, and memory in the respiratory control system. In N. S. Cherniack and J. G. Widdicombe, editors, Handbook of Physiology, volume 2, section 3, pages 93–114. American Physiological Society, Bethesda, MD, 1986.Google Scholar
  13. 13.
    England, S. J., J. E. Melton, P. Pace, and J. A. Neubauer. NMDA receptors mediate respiratory short-term potentiation in the nucleus tractus solitarius. FASEB J., 6: A1826, 1992.Google Scholar
  14. 14.
    Frégnac, Y., D. Shulz, S. Thorpe, and E. Bienenstock. A cellular analogue of visual cortical plasticity. Afa-tare, 333: 367–70, 1988.Google Scholar
  15. 15.
    Fregosi, R. F. Short-term potentiation of breathing in humans. J. Appl. Physiol., 71: 892–9, 1991.PubMedGoogle Scholar
  16. 16.
    Fregosi, R. F., and G. S. Mitchell. Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. J. Physiol. (London), 477: 469–79, 1994.Google Scholar
  17. 17.
    Gesell, R., and M. A. Hamilton. Reflexogenic components of breathing. Am. J. Physiol, 133: 694–719, 1941.Google Scholar
  18. 18.
    Hebb, D. O. The Organization of Behavior. Wiley, New York, 1949.Google Scholar
  19. 19.
    Honda, Y., and M. Ueda. Fluctuations of arterial pH associated with respiratory cycle in dogs. Jpn. J. Physiol., 11:223–8, 1961.CrossRefPubMedGoogle Scholar
  20. 20.
    Kelso, S. R., A. H. Ganong, and T. H. Brown. Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA, 83: 5326–5330, 1986.CrossRefPubMedGoogle Scholar
  21. 21.
    Kirkwood, A., S. M. Dudek, J. T. Gold, C. D. Aizenman, and M. F. Bear. Common forms of synaptic plasticity in the hippocampus and neocortex in-vitro. Science, 260: 1518–1521, 1993.CrossRefPubMedGoogle Scholar
  22. 22.
    Lewis, G., J. Ponte, and M. J. Purves. Fluctuations of PaC02 with the same period as respiration in cat. J. Physiol. (London), 298: 1–11, 1980.Google Scholar
  23. 23.
    Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78: 535–538, 1994.CrossRefPubMedGoogle Scholar
  24. 24.
    Malenka, R. C., and R. A. Nicoli. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends in Neural Sci., 16: 521–7, 1993.CrossRefGoogle Scholar
  25. 25.
    Millhorn, D. E. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat. J. Physiol. (London), 381: 169–79, 1994.Google Scholar
  26. 26.
    Millhorn, D. E., F. L. Eldridge, and J. P. Kiley. Oscillations of medullary extracellular fluid pH caused by breathing. Resp. Physiol., 55: 193–203, 1984.CrossRefGoogle Scholar
  27. 27.
    Minai, A. A. Covariance learning of correlated patterns in competitive networks. Neural Comput., 9: 667–81, 1997.CrossRefPubMedGoogle Scholar
  28. 28.
    Ponte, J., and M. J. Purves. Frequency response of carotid body chemoreceptors in the cat to changes of PaCO2, PaO2, and pHa. J. Appl. Physiol, 37: 635–47, 1974.PubMedGoogle Scholar
  29. 29.
    Poon, C. -S. Ventilatory control in hypercapnia and exercise: optimization hypothesis. J. Appl. Physiol., 62: 2447–2459, 1987.PubMedGoogle Scholar
  30. 30.
    Poon, C. -S. Adaptive neural network that subserves optimal homeostatic control of breathing. Annals of Biomed. Engr., 21: 501–508, 1993.CrossRefGoogle Scholar
  31. 31.
    Poon, C. -S. Self-tuning optimal regulation of respiratory motor output by Hebbian covariance learning. Neural Networks, 9: 1367–1383, 1996.CrossRefPubMedGoogle Scholar
  32. 32.
    Poon, C. -S. Synaptic plasticity and respiratory control. In M. C. K. Khoo, editor, Bioengineering Approaches to Pulmonary Physiology and Medicine, pages 93–113. Plenum, New York, 1996.CrossRefGoogle Scholar
  33. 33.
    Poon, C. -S., Y. Li, S. X. Li, and S. Tonegawa. Respiratory rhythm is altered in neonatal mice with malfunc-tional NMDA receptors. FASEBJ., 8: A389, 1994.Google Scholar
  34. 34.
    Poon, C. -S., and C. K. Merrill. Decrease of cardiac chaos in congestive heart failure. Nature, 389: 492–5, 1997.CrossRefPubMedGoogle Scholar
  35. 35.
    Sammon, M. P., and E. N. Bruce. Vagal afferent activity increases dynamical dimension of respiration in rats. J. Appl. Physiol., 70: 1748–1762, 1991.PubMedGoogle Scholar
  36. 36.
    Sejnowski, T. J. Storing covariance with nonlinearly interacting neurons. J. Math. Biol., 4: 303–321, 1977.CrossRefPubMedGoogle Scholar
  37. 37.
    Stanton, P. K. LTD, LTP, and sliding threshold for long-term synaptic plasticity. Hippocampus, 6: 35–42, 1996.CrossRefPubMedGoogle Scholar
  38. 38.
    Stanton, P. K., and T. J. Sejnowski. Associative long-term depression in the hippocampus induced by Hebbian covariance. Nature, 339: 215–218, 1989.CrossRefPubMedGoogle Scholar
  39. 39.
    Tobin, M. J., M. J. Mador, S. M. Guenther, R. F. Lodato, and M. A. Sackner. Variability of resting respiratory center drive and timing in health subjects. J. Appl. Physiol., 65: 309–17, 1988.PubMedGoogle Scholar
  40. 40.
    Yamamoto, W. S. Transmission of information by the arterial blood stream with particular reference to carbon dioxide. Biophy. J., 2: 143, 1962.CrossRefGoogle Scholar
  41. 41.
    Zhou, Z., J. Champagnat, and C. -S. Poon. Phasic and long-term depression in brainstem nucleus tractus solitarius neurons: differing roles of AMPA receptor desensitization. J. of Neurosci., 17: 5349–5356, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  1. 1.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations