Hebbian Covariance Learning
A Nexus for Respiratory Variability, Memory, and Optimization?
Chapter
Abstract
Respiration is a vital autonomic function that is characterized by an almost unwavering ability to maintain homeostatic blood gas and pH levels in the face of profound physiological and environmental challenges. This remarkable behavior has led many researchers to assume that respiratory control is a reflexogenic process whose sole purpose is simply to maintain nominal body gas and pH tones. While this model has born some insight into certain aspects of the respiratory system, it fails to account for more complex behaviors of the system that have been increasingly recognized.
Keywords
Synaptic Plasticity Respiratory System Synaptic Weight Ventilation Rate Respiratory Control
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Adrian, E. D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. (London), 79: 332–58, 1933.Google Scholar
- 2.Åström, K. J., and B. Wittenmark. Adaptive Control. Addison-Wesley Publishing Company, Inc., New York, 1995.Google Scholar
- 3.Bach, K. B., and G. S. Mitchell. Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respir. Pysiol., 104: 251–60, 1996.CrossRefGoogle Scholar
- 4.Baudry, M., R. F. Thompson, and J. L. Davis. Synaptic plasticity: molecular, cellular, and functional aspects. MIT Press, Cambridge, MA, 1993.Google Scholar
- 5.Biscoe, T. J., and M. J. Purves. Observations on the rhythmic variation in the cat carotid body chemorecep-tor activity which has the same period as respiration. J. Physiol. (London), 190: 389–93, 1967.Google Scholar
- 6.Bisgard, G. E., and J. A. Neubauer. Peripheral and central effects of hypoxia. In A. Dempsey and A. I. Pack, editors, Regulation of Breathing, Ed 2. II. Lung biology in health and disease, volume 79, pages 617–668. Dekker, New York, 1995.Google Scholar
- 7.Bliss, T. V. P., and T. Lømo. Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol., 232: 331–335, 1973.PubMedGoogle Scholar
- 8.Brown, T. H., P. F. Chapman, E. W. Kairiss, and C. L. Keenan. Long-term synaptic potentiation. Science, 242: 724–728, 1988.CrossRefPubMedGoogle Scholar
- 9.Byrne, J. H. Cellular analysis of associative learning. Physiol. Rev., 67: 329–439, 1987.PubMedGoogle Scholar
- 10.Carlson, A. Anti-Hebbian learning in a non-linear neural network. Biol. Cybern., 64: 171–6, 1990.CrossRefPubMedGoogle Scholar
- 11.Dan, Y., and M. M. Poo. Hebbian depression in isolated muscular synapses in vitro. Science, 256: 1570–3, 1992.CrossRefPubMedGoogle Scholar
- 12.Eldridge, F. L., and D. E. Millhorn. Oscillation, gating, and memory in the respiratory control system. In N. S. Cherniack and J. G. Widdicombe, editors, Handbook of Physiology, volume 2, section 3, pages 93–114. American Physiological Society, Bethesda, MD, 1986.Google Scholar
- 13.England, S. J., J. E. Melton, P. Pace, and J. A. Neubauer. NMDA receptors mediate respiratory short-term potentiation in the nucleus tractus solitarius. FASEB J., 6: A1826, 1992.Google Scholar
- 14.Frégnac, Y., D. Shulz, S. Thorpe, and E. Bienenstock. A cellular analogue of visual cortical plasticity. Afa-tare, 333: 367–70, 1988.Google Scholar
- 15.Fregosi, R. F. Short-term potentiation of breathing in humans. J. Appl. Physiol., 71: 892–9, 1991.PubMedGoogle Scholar
- 16.Fregosi, R. F., and G. S. Mitchell. Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. J. Physiol. (London), 477: 469–79, 1994.Google Scholar
- 17.Gesell, R., and M. A. Hamilton. Reflexogenic components of breathing. Am. J. Physiol, 133: 694–719, 1941.Google Scholar
- 18.Hebb, D. O. The Organization of Behavior. Wiley, New York, 1949.Google Scholar
- 19.Honda, Y., and M. Ueda. Fluctuations of arterial pH associated with respiratory cycle in dogs. Jpn. J. Physiol., 11:223–8, 1961.CrossRefPubMedGoogle Scholar
- 20.Kelso, S. R., A. H. Ganong, and T. H. Brown. Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA, 83: 5326–5330, 1986.CrossRefPubMedGoogle Scholar
- 21.Kirkwood, A., S. M. Dudek, J. T. Gold, C. D. Aizenman, and M. F. Bear. Common forms of synaptic plasticity in the hippocampus and neocortex in-vitro. Science, 260: 1518–1521, 1993.CrossRefPubMedGoogle Scholar
- 22.Lewis, G., J. Ponte, and M. J. Purves. Fluctuations of PaC02 with the same period as respiration in cat. J. Physiol. (London), 298: 1–11, 1980.Google Scholar
- 23.Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78: 535–538, 1994.CrossRefPubMedGoogle Scholar
- 24.Malenka, R. C., and R. A. Nicoli. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends in Neural Sci., 16: 521–7, 1993.CrossRefGoogle Scholar
- 25.Millhorn, D. E. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat. J. Physiol. (London), 381: 169–79, 1994.Google Scholar
- 26.Millhorn, D. E., F. L. Eldridge, and J. P. Kiley. Oscillations of medullary extracellular fluid pH caused by breathing. Resp. Physiol., 55: 193–203, 1984.CrossRefGoogle Scholar
- 27.Minai, A. A. Covariance learning of correlated patterns in competitive networks. Neural Comput., 9: 667–81, 1997.CrossRefPubMedGoogle Scholar
- 28.Ponte, J., and M. J. Purves. Frequency response of carotid body chemoreceptors in the cat to changes of PaCO2, PaO2, and pHa. J. Appl. Physiol, 37: 635–47, 1974.PubMedGoogle Scholar
- 29.Poon, C. -S. Ventilatory control in hypercapnia and exercise: optimization hypothesis. J. Appl. Physiol., 62: 2447–2459, 1987.PubMedGoogle Scholar
- 30.Poon, C. -S. Adaptive neural network that subserves optimal homeostatic control of breathing. Annals of Biomed. Engr., 21: 501–508, 1993.CrossRefGoogle Scholar
- 31.Poon, C. -S. Self-tuning optimal regulation of respiratory motor output by Hebbian covariance learning. Neural Networks, 9: 1367–1383, 1996.CrossRefPubMedGoogle Scholar
- 32.Poon, C. -S. Synaptic plasticity and respiratory control. In M. C. K. Khoo, editor, Bioengineering Approaches to Pulmonary Physiology and Medicine, pages 93–113. Plenum, New York, 1996.CrossRefGoogle Scholar
- 33.Poon, C. -S., Y. Li, S. X. Li, and S. Tonegawa. Respiratory rhythm is altered in neonatal mice with malfunc-tional NMDA receptors. FASEBJ., 8: A389, 1994.Google Scholar
- 34.Poon, C. -S., and C. K. Merrill. Decrease of cardiac chaos in congestive heart failure. Nature, 389: 492–5, 1997.CrossRefPubMedGoogle Scholar
- 35.Sammon, M. P., and E. N. Bruce. Vagal afferent activity increases dynamical dimension of respiration in rats. J. Appl. Physiol., 70: 1748–1762, 1991.PubMedGoogle Scholar
- 36.Sejnowski, T. J. Storing covariance with nonlinearly interacting neurons. J. Math. Biol., 4: 303–321, 1977.CrossRefPubMedGoogle Scholar
- 37.Stanton, P. K. LTD, LTP, and sliding threshold for long-term synaptic plasticity. Hippocampus, 6: 35–42, 1996.CrossRefPubMedGoogle Scholar
- 38.Stanton, P. K., and T. J. Sejnowski. Associative long-term depression in the hippocampus induced by Hebbian covariance. Nature, 339: 215–218, 1989.CrossRefPubMedGoogle Scholar
- 39.Tobin, M. J., M. J. Mador, S. M. Guenther, R. F. Lodato, and M. A. Sackner. Variability of resting respiratory center drive and timing in health subjects. J. Appl. Physiol., 65: 309–17, 1988.PubMedGoogle Scholar
- 40.Yamamoto, W. S. Transmission of information by the arterial blood stream with particular reference to carbon dioxide. Biophy. J., 2: 143, 1962.CrossRefGoogle Scholar
- 41.Zhou, Z., J. Champagnat, and C. -S. Poon. Phasic and long-term depression in brainstem nucleus tractus solitarius neurons: differing roles of AMPA receptor desensitization. J. of Neurosci., 17: 5349–5356, 1997.Google Scholar
Copyright information
© Springer Science+Business Media New York 1998