CASE: Complex Adaptive Systems Ecology

  • Jan Molin
  • Søren Molin
Part of the Advances in Microbial Ecology book series (AMIE, volume 15)

Abstract

Microbial ecology is special in the sense that it is at the same time microscopic and macroscopic. Obviously, studies of microorganisms in general are connected with analyses of microcommunities, and there is an increasing tendency to perform detailed studies of microbial ecosystems, which has become possible through an amazing development of microscopic in situ techniques. It is, however, the macroscopic part of microbial ecology, that most evidently has the greatest impact on life on the planet, and therefore the majority of attention has been devoted to the development of this field of research (Atlas and Bartha, 1993; Brock and Madigan, 1988). This part relates to the geochemical cycles of important elements like carbon, oxygen, sulphur, nitrogen, and hydrogen. Bacteria are main actors in the conversion of these elements through their different oxidation states, and the global balances between these states have a fundamental significance for the understanding of the composition and maintenance of the atmosphere and the biosphere on earth.

Keywords

Microbial Community Tacit Knowledge Complex Adaptive System Multiple Reality Naturalistic Inquiry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R. I., Springer, N., Ludwig, W., Gortz, H. D., and Schleifer, K. H., 1991, Identification and phylogeny of uncultured bacterial endosymbionts, Nature 351: 161–165.PubMedGoogle Scholar
  2. Amann, R. I., Ludwig, W., and Schleifer, K.-H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev. 59: 143–169.PubMedGoogle Scholar
  3. Atlas, R. M., and Bartha, R., 1993, Microbial Ecology-Fundamentals and Applications, Benjamin/Cummings Publishing, Redwood City, CA.Google Scholar
  4. Bainton, N. J., Bycroft. B. W., Chhabra, S. R., Stead, P., Gledhill, L., Hill, P. J., Rees, C. E. D., Winson, M. K., Salmond, G. P. C.,Stewart, G. S. A. B., and Williams, P., 1992, A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic synthesis in Erwinia, Gene 116: 87–91.PubMedGoogle Scholar
  5. Bateson, G., 1972, Steps to an Ecology of Mind, Random House, New York.Google Scholar
  6. Berger, P. L, and Luckmann, T., 1966, The Social Construction of Reality, Penguin Books, Baltimore.Google Scholar
  7. Berkowitz, G. C., and Tschirgi, R. D., 1988, The biological foundation of space and the evolution of spatial dimension. J. Soc. biolog. struct., 11: 323–335.Google Scholar
  8. Bohm, D., 1983, Of matter and meaning: the super implicate order. A conversation with David Bohm, Re-vision 6: 34–44.Google Scholar
  9. Boulding, K. E., 1953, The Organizational Revolution - a Study in the Ethics of Economic Organization,Harper and Brothers, New York.Google Scholar
  10. Brakenhoff, G. J., van der Voort, H. T. M., Baarslag, M. W., Mans, B., Oud, J. L, Zwart, R., and van Driel, R., 1988, Visualization and analysis techniques for three dimensional information acquired by confocal microscopy, Scanning Microsc. 2: 1831–1838.PubMedGoogle Scholar
  11. Brock, T. D., and Madigan, M., 1988, The Biology of Microorganisms, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  12. Bryant, M. P., Wolin E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol. 59: 20–3I.Google Scholar
  13. Buckley, W, 1967, Sociology and Modern Systems Theory, Prentice Hall, Englewood Cliffs N.J. Buckley, W., 1969, Society as an open complex system, in:Modern Systems Research for the Behavioural Scientist (W. Buckley, ed.), University of Chicago Press, Chicago.Google Scholar
  14. Bukau, B., 1993, Regulation of the Escherichia coli heat-shock. response, Mol. Microbiol. 9: 671–680.PubMedGoogle Scholar
  15. Caldwell, D. E., 1993, Steady-state microenvironments for subculture of steady-state consortia, communities, and microecosystems, in: Trends in Microbial Ecology, ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 123–128.Google Scholar
  16. Caldwell, D. E., 1995, Cultivation and Study of Biofilm Communities, in: An Introduction to Bacterial Biofilms ( H. M. Lappin-Scott, and J. W. Costerton, eds.), Cambridge University Press, Cambridge, pp. 1–15.Google Scholar
  17. Caldwell, D. E., and Lawrence, J. R., 1988, Study of attached cells in continuous-flow slide culture, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Volume 1 ( J. W. T. Wimpenny, ed.), CRC press, Boca Raton, pp. 117–138.Google Scholar
  18. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1992, Confocal laser microscopy and computer image analysis, in: Advances in Microbial Ecology, Volume 12 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 1–67.Google Scholar
  19. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1993, Analysis of biofilm formation using 2-D versus 3-D digital imaging, in: Microbial Cell Envelopes: Interactions and Biofilms ( L. B. Quesnel, P. Gilbert, and P. S. Handley, eds.), Blackwell Scientific Publications, Oxford, pp. 52S - 66S.Google Scholar
  20. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prascher, D. C., 1994, Green fluorescent protein as a marker for gene expression, Science 263: 802–805.PubMedGoogle Scholar
  21. Characklis, W. G., McFeters, G. A., and Marshall, K. C., 1990, Physiological ecology in biofilm systems, in: Biofilms, Chapter 10 ( W. G. Characklis and K. C. Marshall, eds.), J. Wiley and Sons, New York, pp. 341–93.Google Scholar
  22. Christensen S., and Mohn, J., 1995, Origin and transformation of organizations: institutional analysis of the Danish Red Cross, in: The Institutional Construction of Organizations, (W. R. Scott and S. Christensen, eds.), Sage Publications, Thousand Oaks, California, pp. 67–91.Google Scholar
  23. Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. I., Nickel, N. C., Dasgupta, M., and Marrie, T. J., 1987, Bacterial biofilms in nature and disease, Anno. Rev. Micnbiol. 41: 435–464.Google Scholar
  24. Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D. E., Korber, D. R., and James, G. A., 1994, Biofilms,, The customized microniche, J. Bacterial. 176: 2137–2142Google Scholar
  25. Delaquis, P. J., Caldwell, D. E., Lawrence, J. R., McCurdy, A. R., 1989, Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in respons to nutrient stress, Microb. Ecol. 18: 199–210.Google Scholar
  26. Dempsey, M. J., 1981, Marine bacterial fouling: A scanning electron microscope study, Mar. Biol. 61: 305–315.Google Scholar
  27. DiMaggio, P., 1988, Interest and agency in institutional theory, in: Institutional Patterns and Organizations: Culture and Environment, ( L. G. Zucker, ed.), Ballinger, Cambridge, pp. 3–21.Google Scholar
  28. Dunlap, P. V., and Greenberg, E. P., 1991, Role of intercellular chemical communication in the Virio fischeri-monocentrid fish symbiosis, in: Microbial Cell-Cell Interactions ( M. Dworkin, ed.), American Society for Microbiology. Washington, D. C., pp. 219–253.Google Scholar
  29. Ebert, L., Givskov, M., Sternberg, C. Moller, S., Christiansen, G., and Malin, S., 1996, Physiological responses of Pseudomonas putida KT2442 to phosphate starvation. Microbial. 142: 155–163.Google Scholar
  30. Ebert. L., Winson, M. K., Sternberg, C., Stewart, G. S. A. B., Christiansen, G., Chabra, S. R., Bycroft, B., Williams, P., Malin. S., and Givskov, M., 1996, Involvement of N-acyl-L-homoserine lactone autoinducers in control of multicellular behavior of Serratia liqueficciens, Malec. Microbial. 20: 127–136.Google Scholar
  31. Feuerabend, P. K., 1975, Against Method, Versa, London.Google Scholar
  32. Giddens, A., 1984, The Constitution of Society, University of California Press, Berkeley.Google Scholar
  33. Giovannoni, S., 1991, The polymerase chain reaction, in: Nucleic Acid Techniques in Bacterial Systematics ( E. Stackebrandt and M. Goodfellow, eds.), John Wiley and Sons, New York, pp. 177–203.Google Scholar
  34. Givskov, M., Ebert, L., Moller. S., Paulsen, L. K., and Malin, S., I994a, Responses to nutrient starvation in Pseudomonas putida strain KT2442: Analysis of general cross-protection, cell morphology, and macromolecular content, J. Bacterial. 176: 7–14Google Scholar
  35. Givskov, M., Ebert, L., and Malin. S., 19946, Responses to nutrient starvation in Pseudomonas putida strain KT2442: Two-dimensional electrophoretic analysis of starvation and stress inducible proteins, J. Bacterial. 176: 4816–4824.Google Scholar
  36. Glaser. B. G. and Strauss, A. L., 1967, The Discovery of Grounded Theory, De Gruyter, New York.Google Scholar
  37. Glassman. R. B., 1973, Persistence and loose coupling in living systems, in: Behavioural Science vol. 18 pp. 83–98.Google Scholar
  38. Goffman, E., 1974, frame Analysis, Harper and Row, New York.Google Scholar
  39. Greenberg. E. P., Ulitzur. S., and Hastings, J. W., 1979, Induction of luciferase synthesis in Beneckea harvevi by other marine bacteria, Arch. Microbial. 120: 87–91.Google Scholar
  40. Guba, E. G.. 1985. The context of emergent paradigm research, in: Organizational Theory and Enquiry (Y. S. Lincoln, ed. ), Beverly Hills.Google Scholar
  41. Hall, A. D., and Fagan, R. E., 1969, Definition of system, in: Modern Systems Research for the Behavioural Scientist ( W. Buckley. ed.), University of Chicago Press, Chicago, pp. 81–92.Google Scholar
  42. Hegarty, C. P., and Weeks, O. B., 1940, Sensitivity of Escherichia coli to coldshock during the logarithmic growth phase, J. Bacterial. 39: 4575–484.Google Scholar
  43. Hejl, P. M., 1984. Towards a theory of social systems: self-organization and self-maintenance, self-reference and syn-reference, in: Self-Organization and Management of Social Systems ( H. Ulrich and G. J. B. Probst. eds.). Springer Verlag, Berlin, pp. 60–78.Google Scholar
  44. Hojberg, O., and Sorensen, J., 1993, Microgradients of microbial oxygen consumption in a barley rhizosphere model system, Appl. Environ. Microbiol. 59: 431–437.PubMedGoogle Scholar
  45. Jaques, E., Gibson, R. O., and Isaac, D. J., 1978, Levels of Abstraction in Logic and Human Action, Heineman, LondonGoogle Scholar
  46. Jepras, R. I., Carter, J., Pearson, S. C., Paul, F. E., and Wilkinson, M. J., 1995, Development of a robust flow cytrometric assay for determining numbers of viable bacteria, Appl. Environ. Microbiol. 61: 2696–2701.PubMedGoogle Scholar
  47. Jones, P. G., and Inouye, M., 1994, The cold shock response—a hot topic, Mol. Microhiol. 11: 811–818.Google Scholar
  48. Kaiser, D., and Losick, R., 1993, How and why bacteria talk to each other, Cell 73:873–885.PubMedGoogle Scholar
  49. Kelly, G. A., 1955, The Psychology of Personal Constructs, W. W. Norton, New York.Google Scholar
  50. Kjelleberg, S. (ed.), 1993, Starvation in Bacteria, Plenum Press, New York.Google Scholar
  51. Korber, D. R., James, G. A., and J. W. Costerton, 1994, Evaluation of fleroxacin activity against established Pseudomonas fluorescens biofilms, Appl. Environ. Microbiol. 60: 1663–1669.PubMedGoogle Scholar
  52. Kragelund, L, Christoffersen, B., Nybroe, O., and de Bruijn, F. J., 1995, Isolation of lux gene fusions in Pseudomonas fluorescens DF57 inducible by starvation for nitrogen or phosphorus, FEMS Microbiol. Ecol. 17: 95–105.Google Scholar
  53. Kuhn, T. S., 1962, The Structure of Scientific Revolution, University of Chicago Press, Chicago.Google Scholar
  54. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E., 1991, Optical sectioning of microbial biofilms, J. Bacteriol. 173: 6558–6567.PubMedGoogle Scholar
  55. Leigh, E. G., Jr., 1983, When does the good of the group override the advantage of the individual, Proc. Nat. Acad. Sci. 80: 2985–2989.PubMedGoogle Scholar
  56. Lincoln, Y. S., and Guba, E. G., 1985, Naturalistic Inquiry, Sage Publications, Beverly Hills.Google Scholar
  57. Lyotard, F., 1984, The Postmodern Condition: A Report on Knowledge, Manchester University Press, Manchester.Google Scholar
  58. Maaloe, O., and Kjeldgaard, N. 0., 1966, Control of Macromolecular Synthesis, W. A. Benjamin, New York.Google Scholar
  59. Marshall, K. C., 1994, Microbial ecology: wither goest thou?, in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 5–8.Google Scholar
  60. Marshall, P. A., Loeb, G. I., Cowan, M. M., and Fletcher, M., 1989, Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy, Appl. Environ. Microbiol. 55: 2827–2831.PubMedGoogle Scholar
  61. Maruyama, M., 1963, The Second Cybernetics: Deviation-Amplifying Mutual Causal Processes, in: American Scientists, 51: 164–179.Google Scholar
  62. Massol-Dey, A. A., Whallon, J., Hickey, R. F., and Tiedje, J. M., 1995, Channel structure in aerobic biofilms of fixed-film reactors treating contaminated groundwater, Appl. Environ. Microbiol. 61: 769–777.Google Scholar
  63. Mead, G. H., 1962, Mind, Self and Society, The University of Chicago Press, Chicago.Google Scholar
  64. Molin, J., and Molin, S., 1988, Den Iscenesatte Virkelighed, Akademisk Forlag, Kobenhavn.Google Scholar
  65. Molin, S., Boe, L., Jensen, L. B., Kristensen, C. S., Givskov, M., Ramos, J. L., and Bej, A. K., 1993, Suicidal genetic elements and their use in biological containment of bacteria, Ann. Rev. Microbiol. 47: 139–166.Google Scholar
  66. Moller, S., Kristensen, C. S., Paulsen, L. K., Cartensen, J. M., and Molin, S., 1995, Bacterial growth on surfaces: Automated image analysis for quantification of growth-related parameters. Appl. Environ. Microbiol. 61: 741–748.PubMedGoogle Scholar
  67. Moller, S., Pedersen, A. R., Arvin. E., and Molin, S., 1996, Activity and spatial distribution of a toluene degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy, Appl. Environ. Microhiol. 62: 46324640.Google Scholar
  68. Moller, S., Korber, D. R., Wolfaardt, G. M., Molin, S., and Caldwell, D. E., 1997. The impact of protozoan grazing on the architecture of a degradative biofilm community, Appl. Environ. Microbiol. (submitted).Google Scholar
  69. Morgan, G., 1986, Images of Organizations, Sage Publications, Beverly Hills.Google Scholar
  70. Morgan, G., 1987, Knowledge, uncertainty, and choice; exploring choice, reframing the process of evaluation, in: Beyond Method: Strategies for Social Research ( G. Morgan, ed.), Sage, Beverly Hills.Google Scholar
  71. Neidhardt, F. C., Ingraham, J. L., and Schaechter, M., 1990, Physiology of the Bacterial Cell, Sinauer Associates, Sunderland, Mass.Google Scholar
  72. Nybroe, O., 1995, Asssessment of bacterial metabolic activity—new developments in microcolony and dehydrogenase assays, review, FEMS Microbiol. Ecol. 17: 77–84.Google Scholar
  73. Nystrom, T., Flardh, K., and Kjelleberg, S., 1990, Responses to multiple nutrient starvation in marine vibrio sp. strain CCUG 15956, J. Bacteriol. 172: 7085–7097.PubMedGoogle Scholar
  74. Nystrom, T., Olsson, R. M., and Kjelleberg, S., 1992, Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58: 55–65.PubMedGoogle Scholar
  75. Orton, J. D., and Weick, K. E., 1990, Loosely coupled systems: a reconceptualization, Academy of Management Review, 15: 203–223.Google Scholar
  76. Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J., 1986, The analysis of natural microbial populations by ribosomal RNA sequences, Adv. Microb. Ecol. 9: 1–55.Google Scholar
  77. Passador, L., Cook, J. M., Cambello, J., Rust, L., and Iglewski, B. H., 1993, Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127–1130.PubMedGoogle Scholar
  78. Paster, B. J., Cooke, S., Dewhirst, F. E., and Breznak, J. A., 1994, Phylogeny of a novel Treponema species determined from PCR amplification of 16S rRNA gene, Abst. Gen. Meet. Am. Soc. Microbiol. 94: 313.Google Scholar
  79. Patton, M. Q., 1980, Qualitative Evaluation Methods, Sage, Beverly Hills.Google Scholar
  80. Pettigrew, A. M., 1995, Longitudinal research on change: Theory and practice, in: Longitudinal Field Research Methods. Studying processes of organizational change ( G. P. Huber and A. H. Van de Ven, eds.), Sage, Thousand Oaks.Google Scholar
  81. Pickup, R. W., 1991, Development of molecular methods for the detection of specific bacteria in the environment J. Gen. Microbiol. 137: 1009–1019.Google Scholar
  82. Poulson, L. K., Lan, F., Kristensen, C. S., Hobolth, P., Molin, S., and Krogfelt, K. A., 1994, Spatial distribution of E. coli in the mouse large intestine inferred from rRNA in situ hybridization, Infect. Immun. 62: 5191–5194.Google Scholar
  83. Rapoport, A., 1986, General Systems Theory,Turnbridge Wells.Google Scholar
  84. Revsbech, N. P., and Jorgensen, B. B., 1988. Microelectrodes: their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 293–352.Google Scholar
  85. Riedl, R., 1984, Self-organization: some theoretical cross-connections, in: Self-Organization and Management of Social Systems, ( H. Ulrich and G. J. B. Probst, eds.), Springer Verlag, Berlin.Google Scholar
  86. Robarts, R. D., and Zohar, T., 1993, Fact or fiction—bacterial growth rates and production as determined by [3H-methyl]thymidine, in: Advances in Microbial Ecology, Vol. 13 ( G.-F. Jones, ed.), Plenum Press, New York, pp. 371–418.Google Scholar
  87. Robinson, R. W., Akin D. E., Nordstedt, R. A., Thomas, M. V., and Aldrich, H. C., 1984, Light and electron microscopic examninations of methane-producing biofilms from anaerobic fixed-bed reactors, Appl. Environ. Microbiol. 48: 127–136.PubMedGoogle Scholar
  88. Rodrigues, G. G., Phipps., D., Ishiguro, K., and Ridgway, H. F., 1992, Use of a fluorescent redox probe for direct visualization of actively respiring bacteria, Appl. Environ. Microbiol. 58: 1801–1808.Google Scholar
  89. Rorty, R., 1980, Philosophy and the Mirror of Nature,Princeton N.J.Google Scholar
  90. Schwartz. P., and Ogilvy, J., 1979, The Emergent Paradigm: Changing Patterns of Thought and Belief, VALS report, no. 7, SRI International, Menlo Park, CA.Google Scholar
  91. Scott, W. R., 1992, Organizations: Rational, Natural, and Open Systems, Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  92. Shapiro, J. A., 1988, Bacteria as multicellular organisms, Sci. Am. 256: 82–89.Google Scholar
  93. Sjollema, J., Busscher, H. J., and Weerkamp, A. H., 1989, Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis, J. Micobiol. Methods 9: 73–78.Google Scholar
  94. Slater. J. H., and Hartman, D. J., 1982, Microbial ecology in the laboratory:experimental systems, in: Experimental Microbial Ecology ( R. G. Burns and J. H. Slater, eds.), Blackwell Scientific, Oxford, pp. 255–274.Google Scholar
  95. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogenetically based hybridization probes for studies of rumina) microbial ecology, Appl. Environ. Microbial. 54: 1079–1084.Google Scholar
  96. Stams, A. J. M., Grotenhuis, J. T. C., and Zehnder, A. J. B., 1989, Structur function relationship in granular sludge, in: Recent advances in microbial ecology, ( T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Societies Press, Tokyo, pp. 440–445.Google Scholar
  97. Torsvik, V., Goksryr, J., and Daae, F. L., 1990, High diversity of DNA of soil bacteria, Appl. Environ. Microbial. 56: 782–787.Google Scholar
  98. Toulmin, S., 1961, Foresight and Understanding, Cambridge University Press, Cambridge.Google Scholar
  99. Tsoukas, H., 1989, The validity of idiographic research explanations, Acad. Manage. Rev. 14: 55 1561.Google Scholar
  100. Ulrich, H., and Probst, G. J. B., 1984, Self-Organization and Management of Social Systems, Springer Verlag, Berlin.Google Scholar
  101. Overbeck, L., Eberl, L., Givskov, M., Molin, S. and van Elsas, J. D., 1995, Survival of, and induced stress resistance in, Pseudomonasfluorescens cells residing in soil, Appl. Envir. Microbial. 61: 4202–4208.Google Scholar
  102. De Ven, A. H., 1992, Suggestions for studying strategy process: A research note, Strateg. Manag. J. 13: 169–188.Google Scholar
  103. Bertalanffy, L., 1968, General Systems Theory, George Braziller, New York.Google Scholar
  104. Foerster, H., 1984, Principles of self-organization in a socio-managerial context, in: Self-Organization and Management of Social Systems ( H. Ulrich and G. J. B. Probst, eds.), Springer Verlag, Berlin.Google Scholar
  105. Wagner, M., Amann, R., Lemmer, H., and Schleifer, K.-H., 1993, Probing activated sludge with oligonucleotides specific for protobacteria: Inadequacy of culture-dependent methods for describing microbial community structure, Appl. Environ. Microbiol. 59: 1520–1525.PubMedGoogle Scholar
  106. Ward, D. M., Weller, R., and Bateson, M. M., 1990, 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature 453: 63–65.Google Scholar
  107. Ward, D. M., Bateson, M. M., Weller, R., and Ruff-Roberts, A. L., 1992, Ribosomal RNA analysis of microorganisms as they occur in nature, in: Advances in Microbial Ecology, Vol. 12 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 219–286.Google Scholar
  108. Weick, K., 1979, The Social Psychology of Organizing (2nd edition) Addison Wesley, Reading, MA.Google Scholar
  109. Weick, K. E., 1993, Sensemaking in organizations: Small structures with large consequences, in: Social Psychology in Organizations, Prentice Hall, London.Google Scholar
  110. Whitehead, A. N., 1929, Process and Reality, Cambridge University Press, London. Whitehead, A. N., 1967, Science and the Modern World, Free Press, New York.Google Scholar
  111. Wilden, A., 1972, System and Structure, Tavistock Publications, London.Google Scholar
  112. Woese, C. R., 1987, Bacterial evolution, Microb. Rev. 51: 221–271.Google Scholar
  113. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994a, Multicellular organization in a degradative biofiim community, Appl. Environ. Microbiol. 60: 434–446.PubMedGoogle Scholar
  114. Wolfaardt, G. W., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994b, The role of interactions, sessile growth and nutrient amendment on the degradative efficiency of a bacterial consortium, Can. J. Microbiol. 40: 331–340.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jan Molin
    • 1
  • Søren Molin
    • 2
  1. 1.Institute of Organization and Industrial SociologyCopenhagen Business SchoolDenmark
  2. 2.Department of MicrobiologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations