c-Direction Finite Voltage in Bi-based/Ag Multifilament Tapes

  • R. Zeng
  • Q. Y. Hu
  • J. N. Li
  • H. K. Liu
  • S. X. Dou
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

A finite voltages along the c-direction of the Ag-sheathed Bi-2223 multifilament tapes have been measured, detected by voltage leads attached on the opposite broad faces of the tape. A theoretical analysis using magnetic flux creep and flow model and simplified electric network model is provided. The non-uniformity of the mass core density of the core and unsymmetric distribution of the cores over the transverse cross section result in the finite voltage.

Keywords

Critical Current Density Transverse Cross Section Broad Face Flux Creep Apply Superconductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    H.Sekine, K.Inone, H.Maed and K.Numata, J. Appl. Phys. 66: 2762 (1988)Google Scholar
  2. [2]
    A.Oota, A.Yata, K.Hayashi and K.Ohba, J. Appl. Phys. 69: 3182 (1991)ADSCrossRefGoogle Scholar
  3. [3]
    Q.Li, K.Brodersen, H.A.Hjuler and T.Freltoft, Physica C 217: 360 (1993)Google Scholar
  4. [4]
    S.X.Dou, H.K.Liu, Y.L.Zhang and W.M.Bian, Supercond. Sci. Technol. 4: 203 (1991)Google Scholar
  5. [5]
    J.W.Ekin, D.K.Finnemore, Q.Li, J.Tenbrink and W.Carter, Appl. Phys. Lett. 61: 858 (1992)Google Scholar
  6. [6]
    Q.YHu, R.M.Schalk, H.W.Weber, H.K.Liu, R.K.Wang, C.Czurda, and S.X.Dou, J. Appl. Phys. 78: 1123 (1995)Google Scholar
  7. [7]
    Q.Y.Hu, H.K.Liu and S.X.Dou, Physica C 250: 7 (1992)Google Scholar
  8. [8]
    Q.Y.Hu, H.K.Liu and S.X.Dou, Cryogenics 32: 1038 (1992)Google Scholar
  9. [9]
    J.A.Parrell, S.E.Dorrirs and D. C.Larbalestier, Physica C 231: 237 (1994)Google Scholar
  10. [10]
    P.Kovâè, I.Husek and W.Pachla, Applied Superconductivity edited by D. Dew-Hughes Vol. 1: 367(1995)Google Scholar
  11. [11]
    I.Husek, P.Kovdè, and W.Pachla, Supercond. Sci. andTechnol. 8: 617 (1995)Google Scholar
  12. [12]
    M.Karuna, J.A.Parrell and D.C.Larbalestier, IEEE Trans on Applied Superconductivity 5: 1279 (1995)Google Scholar
  13. [13]
    P.Kovâè, I.Husek, W.Pachla, H.Marcinak and T.Melísek, Physica C 261: 131 (1996)ADSCrossRefGoogle Scholar
  14. [14]
    I.Husek, P.Kovâè and L.Kopera, Supercon. Sci. and Technol. 9: 1066 (1996)ADSCrossRefGoogle Scholar
  15. [15]
    M.Polak, P.Usak and F.Chovanec, Cryogenics 34: 805 (1994)Google Scholar
  16. [16]
    J.Sha, K.Ma, J.S.Wang, Q.R.Zhang, Z.K.Jiao, Y.R.Zhou, B.Ye, R.Zeng and M.Zhou Phys. State. Sol. (a) 141: 119 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Zeng
    • 1
  • Q. Y. Hu
    • 1
  • J. N. Li
    • 1
  • H. K. Liu
    • 1
  • S. X. Dou
    • 1
  1. 1.Center for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia

Personalised recommendations