Critical Current and Strain Tolerance of Bi-2223/Ag Multifilament Tapes

  • N. Savvides
  • A. Thorley
  • D. Reilly
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

Multifilament Bi-2223/Ag composite tapes are candidates for large-scale applications in power transmission and power devices for operation at or below liquid nitrogen temperature. To withstand the handling and winding operations during device fabrication, the tapes must have a strain tolerance or irreversible strain limit ε irr ≥ 0.3%.

We report the results of a comprehensive investigation of the effects of bend strain, e, on the critical current, Ic (77 K), of a 27-filament Bi-2223/Ag tape. The strain was applied by single-bend and double-bend tests, and by up to one hundred cyclic double-bend tests by bending specimens to a radius of curvature from ∞ (straight tape) to 10 mm (ε = 0–1.5%). In general, the irreversible strain limit, ε irr , decreases from 0.4% for single-bend tests to 0.2% for double-bend tests. At 0.4% strain, I /I c0 o = 95% for single-bend tests and 60% for double-bend tests. The I-V characteristics near Ic obey the relation VI n where n decreases with increasing strain from about 20 for zero strain to about 4 for 1.5% strain.

Keywords

Critical Current Density Applied Strain Strain Tolerance Irreversible Strain Fault Current Limiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Savvides and J. Yau, Physica C 235–240: 3457 (1994).Google Scholar
  2. 2.
    J. Yau and N. Savvides, Appl. Phys. Lett. 65: 1454 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    J. Yau, N. Savvides and C.C. Sorrell, Physica C 266: 223 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    S-L. Huang, B. Schoenwaelder, D. Dew-Hughes and C.R.M. Grovenor, Mat. Lett. 24: 271 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Lahtinen, J. Paasi, J. Sarkaniemi, Z. Han and T. Freltoft, IEEE Trans. Mag. 32: 2814 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    J. Yau and N. Savvides, Proc. Int. Ceram. Conf., Sydney 1994 (Aust. Ceram. Soc. ), p. 1129.Google Scholar
  7. 7.
    D.N. Matthews, K-H. Muller, C. Andrikidis, H.K. Liu ans S.X. Dou, Physica C 229: 403 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    W.D. Lee, L. Horng, T.J. Yang and B-S. Chiou, Physica C 247: 215 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Fang, S. Danyluk and M.T. Lanagan, Cryogenics 36: 957 (1996).CrossRefGoogle Scholar
  10. 10.
    W. Goldacker, J. Kessler, B. Ullmann, E. Mossang and M. Rikel, IEEE Trans. Appl. Supercon. 5: 1834 (1995).CrossRefGoogle Scholar
  11. 11.
    Y. Kamisada, T. Koizumi, M. Satou and Y. Yamada. IEEE Trans. Mag. 30: 1675 (1994).CrossRefGoogle Scholar
  12. 12.
    J.P. Singh, J. Joo, N. Vasanthamohan and R.B. Poeppel, J. Mater. Res. 8: 2458 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • N. Savvides
    • 1
  • A. Thorley
    • 1
  • D. Reilly
    • 1
  1. 1.Telecommunications and Industrial PhysicsCSIROSydneyAustralia

Personalised recommendations