Critical Currents and Superconducting Boundary Effects in S-N-S Multifilamentary Composites

  • M. D. Sumption
  • S. Takács
  • E. W. Collings
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 44)

Abstract

The proximity effect critical current density (Jcp) has been measured for number of NbTi multifilamentary composites with Cu matrices. Representative strands with filamentary Nb barriers of 0, 2, and 4% of the filamentary radius have been tested. For most strand types, several strand diameters have been taken, and several twist pitches of each have been measured. In all cases, L ≫ Lp. All measurements are made using a vibrating sample magnetometer in stepping mode, with field wait times equal to 5 minutes or greater. Jcp values as a function of fields of up to 16 kOe are reported. Measurements for different strand designs and strand manufacturers are discussed and intercompared. Several results were found. First, the presence of Nb barriers with thicknesses which are similar to or greater than the coherence length in the Nb enhance Jcp. Additionally, all strands without Nb barriers have comparable Jc,s in zero field at corresponding values of interfilamentary separation (dN). However, while two of the strand types had quite similar field dependencies, the field dependence of the third strand type was very different.

Keywords

Field Dependence Coherence Length Zero Field Twist Pitch Strand Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.K. Ghosh, W.B. Sampson, E.Gregory, et al.,IEEE Trans. Magn. 23, 1724 (1987).Google Scholar
  2. I. Hlâsnik, S. Takâcs, V.P. Burjak, et al.,Cryogenics 25, 558 (1985).Google Scholar
  3. 3.
    M.D. Sumption and E.W. Collings, Cryogenics 34, 491 (1994).CrossRefGoogle Scholar
  4. N. Harada Y. Mawatari, O. Miura, et al.,Cryogenics 31, 183 (1991).Google Scholar
  5. 5.
    W. Can, Jr., J. Appl. Phys. 54, 6549 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    M.D. Sumption, Physica C 261, 245 - 258 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    L. D. Cooley, P. J. Lee, D. C. Larbalestier, Phys. Rev. B 53, 6638 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    A. Gurevich and L.D. Cooley, Phys. Rev. B 50 13, 563 (1994).Google Scholar
  9. 9.
    T.H. Courtney and J. Wulff, Phys. Lett. 25A, 477 - 9 (1967).CrossRefGoogle Scholar
  10. 10.
    J.-Q. Wang, N.D. Rizzo, J.D. McCambridage, D.E. Prober, L.R. Motowidlo, and B.A. Zeitlin, Adv. Cryo. Eng. (Materials) 42, 1109 (1997).Google Scholar
  11. 11.
    E.S. Otabe and T. Matsushita, Cryogenics 33, 531 (1993).CrossRefGoogle Scholar
  12. 12.
    T. Matsushita, S. Otabe, and T. Matsumoto, Adv. Cryo. Eng. (Materials) 36, 263 - 270, 1990.CrossRefGoogle Scholar
  13. 13.
    T. Matsushita, J. Appl. Phys. 54, 281 - 288 (1983).ADSCrossRefGoogle Scholar
  14. L. R. Motowidlo et al.,Appl. Phys. Lett. 61, 991 (1992).Google Scholar
  15. 15.
    K. Yamafuji, N. Harada, Y. Mawatari, et al., Supercond. Sci. Technol. 5, S117 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    T. Akune, N. Sakamoto, O. Miura, et al., J. Low Temp. Physics 94, 219 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    V. M. Krasnov, N. F. Pedersen, and V. A. Oboznov, Phys. Rev. B 50, 1106 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Golubov and V. M. Krasnov, Physica C 177, (1992).Google Scholar
  19. 19.
    V. M. Krasnov, N. F. Pedersen, and A. A. Golubov, Physica C 209, 579 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    V. M. Krasnov, V. A. Oboznov, and V. V. Ryazanov, Physica C 196, 335 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    M.D. Sumption S. Takâcs, and E.W. Collings, Paper to this conference.Google Scholar
  22. 22.
    M.D. Sumption and E.W. Collings, Adv. Cryo. 42, 1175 (1997).Google Scholar
  23. 23.
    M.D Sumption and E.W. Collings, IEEE Trans. Appl. Supercond. 7, 1117 (1997).CrossRefGoogle Scholar
  24. 24.
    M.D. Sumption and S. Takâcs, Submitted to Physica C, 1997.Google Scholar
  25. 25.
    M.D. Sumption and S. Takâcs, presented at EUCAS 1997.Google Scholar
  26. 26.
    M.D. Sumption and E.W. Collings, Adv. Cryo. Eng. 40, 807 (1994).Google Scholar
  27. 27.
    P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).ADSCrossRefGoogle Scholar
  28. 28.
    R.W. Heussner, P.J. Lee, and D.C. Larbalestier, IEEE Trans. Appl. Superconductivity 3, 757 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. D. Sumption
    • 1
  • S. Takács
    • 2
  • E. W. Collings
    • 1
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Electrotechnical InstituteSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations