Superconductive Electronics with High Transition Temperature Films

  • A. Davidson
  • J. Talvacchio
  • M. G. Forrester
  • J. R. Gavaler
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Electronics based on high transition temperature superconductive thin film materials is presently viable in some important niches, particularly in passive microwave circuits. Applications requiring Josephson junctions are impeded by the lack of reproducible junctions, but the junctions that can be produced are good candidates for the new Rapid Single Flux Quantum class of extremely fast digital circuits. Other devices that take advantage of the weak fluxoid pinning of some films are also promising, particularly the flux flow transistor. The availability of both Josephson and flux flow devices at 77 K invites exploration of hybrid technologies using HTS multi-chip modules supporting silicon CMOS chips and superconductive chips at the same time. The superconductive contribution to the emerging applications can result in significant performance advantages, particularly in remote sensing and communications.

Keywords

High Temperature Superconductivity Josephson Junction Flux Flow Multichip Module Rapid Single Flux Quantum1 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.K. Likharev, O.A. Mukhanov, and V.K. Semenov, Resistive single flux quantum logic for Josephson junction technology, in: “SQUID’85”, pp. 1103–1108, W. de Gruyter, ed., Berlin (1985).Google Scholar
  2. 2.
    D.P. McGinnis, J.E. Nordman, and J.B. Beyer, Optimization of circuit parameters for the vortex flow transistor, IEEE Trans. Mag., MAG-23, 699 (1987).Google Scholar
  3. 3.
    R.A. Davidheiser, Superconducting microstrip filters, AIP Conference Proceedings No. 14, “Future Trends in Superconducting Electronics” Edited by B.S. Deaver, C.M. Falco, J.H. Harris, and S.A. Wolf, AlP, New York, 1978, pp. 219–222.Google Scholar
  4. 4.
    M. Nisenoff, J.C. Ritter, G. Price, and S.A. Wolf, The high temperature superconductivity space experiment, IEEE Trans. Appl. Supercond. Vol. 3, 2885 (1993).CrossRefGoogle Scholar
  5. 5.
    J. M. Phillips, M. P. Siegal, C. L. Perry, and J. H. Marshall, Comparison of Ba2YCu3O7_d films on NdGaO3 and LaA1O3, IEEE Trans. Magn. 27 (2), 1006 (1991).CrossRefGoogle Scholar
  6. 6.
    J. R. Gavaler, J. Talvacchio, T. T. Braggins, M. G. Forrester, and J. Greggi, Critical parameters in the single-target sputtering of YBa2Cu3O7,“ J. Appl. Phys. 70 (8), 4383 (1991).CrossRefGoogle Scholar
  7. 7.
    T. Venkatesan, X. Wu, A. Inam C. C. Chang, M. S. Hegde, and B. Dutta, Laser processing of high-Tc superconducting thin films,“ IEEE J. Quantum Elec. 25 (11), 2388 (1989).CrossRefGoogle Scholar
  8. 8.
    Robin J. Kennedy, A new geometry for laser ablation for the production of smooth single layer YBCO/PBCO multilayer films, in “Adv. in Cryo. Eng. (Materials)” Vol. 138, 1005. Edited by F.R. Fickett and R.P. Reed, Plenum Press, New York (1992).Google Scholar
  9. 9.
    A. Erbil, K. Zhang, B. S. Kwak, and E. P. Boyd, Review of metalorganic chemical vapor deposition of high-temperature superconducting thin films,“ in: ”Processing of Films for HTS Electronics,“ edited by T. Venkatesan, SPIE 1187, Bellingham, WA, pp. 104, (1990).Google Scholar
  10. 10.
    P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino, Critical current measurements in epitaxial films of YBa2Cu3O7-x, Phys. Rev. Lett. 58, 2684 (1987).CrossRefGoogle Scholar
  11. 11.
    R.W. Simon, Substrates for HTS films,“ in: ”Processing of Films for HTS Electronics“, edited by T. Venkatesan, SPIE 1187, Bellingham, WA, pp. 2. (1990).Google Scholar
  12. 12.
    Gong-Da-Yao, Shang-Yun Hou, M. Dudley, and J.M. Phillips, Synchrotron x-ray topography studies of twin structures in lanthanum aluminate single crystals, J. Mater. Res. 7, 1847 (1992).CrossRefGoogle Scholar
  13. 13.
    M. Sasaura, S. Miyazawa, and M. Mukaida, Thermal expansion coefficientsof high-Tc superconductor substrate NdGaO3 single crystal, J. Appl. Phys. 68 (7), 3643 (1990).CrossRefGoogle Scholar
  14. 14.
    A. Schilling, M. Cantoni, J.D. Guo, and H.R. Ott, Superconductivity above 130K in the Hg-Ba-Cu-O system, Nature 30, 56 (1993).CrossRefGoogle Scholar
  15. 15.
    A.T. Findikoglu, C. doughty, S. Bhattacharya, Qi Li, X.X. Xi, T. Venkatesan, R.E. Fahey, A.J. Strauss, and Julia M. Phillips, Sr2A1TaO6 films for multilayer high-temperature superconducting device applications, Appl. Phys. Leu. 61, 1718 (1993).CrossRefGoogle Scholar
  16. 16.
    M.J. Burns, P.R. de la Houssaye, S.D. Russell, G.A. Garcia, S.R. Clayton, W.S. Ruby, and L.P. Lee, Demonstration of YBCO and complementary metal oxide semiconductor device fabrication on the same sapphire substrate, Appl. Phys. Leu. 63, 1282 (1993).CrossRefGoogle Scholar
  17. 17.
    Invited presentations at the “High Tc Superconductivity in Microwave Systems: A Technology Assessment,” Workshop, 1993 International Microwave Symposium, D.L. Johnson, JPL.Google Scholar
  18. 18.
    Data kindly provided prior to publication by S. Talisa and M. Janocko, Westinghouse STC, Pittsburgh, PA 15235.Google Scholar
  19. 19.
    M.J. Burns, K. char, B.F. Cole, W.S. Ruby and S.A. Sachtjenh, Multichip module using multilayer YBa2Cu3O7 interconnects, Appl. Phys. Leu., 62, 1435 (1993).CrossRefGoogle Scholar
  20. 20.
    D.J. Frank and A. Davidson, Prospects for high-Tc supercondcutor/semiconductor transistor like devices“, 5th International Workshop on Future Electron Devices, Miyagi, Japan, June 1988Google Scholar
  21. 21.
    R.P. Robertazzi, R.H. Koch, R.B. Laibowitz, and W.J. Gallagher, Y1Ba2Cu3O7/MgO/Y1Ba2Cu3O7 Edge Junctions, Appl. Phys. Lett. 61, 711 (1992).CrossRefGoogle Scholar
  22. 22.
    K.K. Likharev and V.K. Semenov, RSFQ Logic/Memory Family, IEEE Trans. Appl. Supercond. 1, 3 (1991).CrossRefGoogle Scholar
  23. 23.
    J.R. Wenot, J.S. Martens, C.I.H. Ashby, T.A. Plut, V.M. Hietala, C.P. Tigges, D.S. Ginley, M.P. Siegal, J,M, Phillips and G.K.G. Hohenwarter, YBCO nanobridges fabricated by direct-write electron beam lithography, Appl. Phys. Leu. 61, 1597 (1992).CrossRefGoogle Scholar
  24. 24.
    J. S. Martens, V.M. Hietala, T.A. Plut, D.S. Ginley, G.A. Vawter, C.P. Tigges, M.P. Siegal, Julia M. Phillips, and S.Y. Hou, Flux flow microelectronics, IEEE Trans. Appl. Supercond., vol. 3, 2295 (1993).CrossRefGoogle Scholar
  25. 25.
    Harry Kroger and Uttam Ghoshal, Can superconductive digital systems compete with semiconductor systems? IEEE Trans. Appl. Supercond., Vol. 3, 2307 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. Davidson
    • 1
  • J. Talvacchio
    • 1
  • M. G. Forrester
    • 1
  • J. R. Gavaler
    • 1
  1. 1.Westinghouse Science and Technology CenterPittsburghUSA

Personalised recommendations