Oxide Superconducting Magnets Operating Near 20 K

  • Seiji Hayashi
  • Toshio Egi
  • Takashi Hase
  • Kazuyuki Shibutani
  • Rikuo Ogawa
  • Yoshio Kawate
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

For magnet operation near 20 K, we designed a cryostat equipped with a cryocooler; prepared long, Ag-sheathed Bi-2212 superconducting tapes with a high critical current; and prepared pancake coils. On the basis of differential scanning calorimetry measurements, the Bi-2212 powder composition and the heat-treatment temperature were optimized. We measured a critical current of 287 A at 4.2 K in a zero magnetic field. Double pancake coils were fabricated from this tape. This coil was placed in the specially designed cryostat and tested near 20 K. A dc magnetic field of 0.62 T was achieved at 20 K.

Keywords

Critical Current Hysteresis Loss Zero Magnetic Field Pancake Coil High Critical Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Iwasa, p. 1205 in “Advances in Superconductivity V,” Springer-Verlag, Tokyo (1992).Google Scholar
  2. 2.
    H. Mukai, K. Ohkura, N. Shibuta, T. Hikata, M. Ueyama, T. Kato, J. Fujikami, K. Munakata, and K. Sato, p. 679 in “Advances in Superconductivity V,” Springer-Verlag, Tokyo (1992).Google Scholar
  3. 3.
    J. Kase, K. Togano, H. Kumakura, D.R. Dieterich, N. Irisawa, T. Morimoto, and H. Maeda, Jap. J. App!. Phys. 29: L1096 (1990).CrossRefGoogle Scholar
  4. 4.
    K. Togano, H. Kumakura, K. Kadowaki, H. Kitaguchi, H. Maeda, J. Kase, J. Shimoyama, and K. Nomura, Adv. Cryog. Eng. 38B: 1081 (1992).Google Scholar
  5. 5.
    S. Hayashi, K. Shibutani, T. Ergi, I. Shigaki, R. Ogawa, Y. Kawate, and P. Lambert, p. 49 in “Proceedings of the 5th U.S.-Japan Workshop on High-T. Superconductors,” Tsukuba, Japan (1992).Google Scholar
  6. 6.
    K. Shibutani, T. Ergi, S. Hayasahi, I. Shigaki, R. Ogawa, Y. Kawate, and P. Lambert, p. 725 in “Advances in Superconductivity V,” Springer-Verlag, Tokyo (1992).Google Scholar
  7. 7.
    K. Shibutani, T. Ergi, S. Hayashi, Y. Fukumoto, I. Shigaki, Y. Masuda, R. Ogawa, and Y. Kawate, IEEE Trans. Appl. Supercond. 3: 935 (1993).CrossRefGoogle Scholar
  8. 8.
    H. Kumakura, H. Kitaguchi, K. Togano, H. Maeda, J. Shimoyama, and K. Nomura. p. 2 in “Proceedings of the 5th U.S.-Japan Workshop on High-T, Superconductors,” Tsukuha, Japan (1992).Google Scholar
  9. 9.
    Y. Xu, W. Guan, and K. Zeibig, Appl. Phys. Leu. 54: 1699 (1989).CrossRefGoogle Scholar
  10. 10.
    K.H. Müller, IEEE Trans. Magn. 27: 2174 (1991).Google Scholar
  11. 11.
    J. Orehotsky, M. Garber, Youwen Xu, Y.L. Wang, and M. Suenaga, J. Appl. Phys. 67: 1433 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Seiji Hayashi
    • 1
  • Toshio Egi
    • 1
  • Takashi Hase
    • 1
  • Kazuyuki Shibutani
    • 1
  • Rikuo Ogawa
    • 1
  • Yoshio Kawate
    • 1
  1. 1.Superconducting and Cryogenic Technology CenterKobe Steel, Ltd.KobeJapan

Personalised recommendations