Development of Superconducting Coil Using Bi-2212/Ag Tapes

  • Naruaki Tomita
  • Jun-ichi Shimoyama
  • Hitoshi Kitaguchi
  • Hiroaki Kumakura
  • Kazumasa Togano
  • Hiroshi Maeda
  • Hiroki Fujii
  • Katsumi Nomura
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Many investigations for practical use of oxide superconducting tape and wire are in progress.1–7 We are developing superconducting coils using Bi2Sr2CaCu2O x (Bi-2212)/Ag composite tapes. The Bi-2212/Ag tapes prepared by the melt-solidification method have an excellent microstructure of highly oriented and densely stacked Bi-2212 crystals with their ab-plane parallel to the silver tape surface. Owing to this preferable microstructure, they show high J c values, more than 105 A/cm2, even in magnetic fields above 20 T at 4.2 K.8 Therefore, superconducting coils using Bi-2212/Ag tapes are expected to be of practical use as the inner magnet of a hybrid superconducting magnet system, generating more than 20 T at 4.2 K, where application of conventional superconducting materials is difficult because of their low upper critical fields. Furthermore, these coils are expected to be operated around 20 K, where cooling with a refrigerator is possible.

Keywords

High Magnetic Field Phthalic Acid Bias Field Acid Anhydride Bias Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Togano, H. Kumakura, K. Kadowaki, H. Kitaguchi, H. Maeda, J. Kase, J. Shimoyama, and K. Nomura, p. 1081 in “Advances in Cryogenic Engineering—Materials,” vol. 38, Plenum Press, New York (1992).Google Scholar
  2. 2.
    P. Haider, J.G. Hoehn, Jr., J.A. Rice, L.P. Motowidlo, U. Balachandran, C.A. Youngdahl, J. E. Tkaczyk, and P.J. Bednarczyk, IEEE Trans. Appl. Supercond. 3: 1127 (1993).CrossRefGoogle Scholar
  3. 3.
    J. Tenbrink, M. Wilhelm, K. Heine, and H. Krauth, IEEE Trans. Appl. Supercond. 3: 1123 (1993).CrossRefGoogle Scholar
  4. 4.
    T. Kimura, T. Hasegawa, and H. Ogiwara, IEEE Trans. Appl. Supercond. 3: 939 (1993).CrossRefGoogle Scholar
  5. 5.
    K. Shibutani, T. Egi, S. Hayashi, Y. Fukumoto, I. Shigaki, Y. Masuda, R. Ogawa, and K. Kawate, IEEE Trans. Appl. Supercond. 3: 935 (1993).CrossRefGoogle Scholar
  6. 6.
    K. Sato, Phys. World 7: 37 (1992).Google Scholar
  7. 7.
    M. Mimura, T, Kinoshita, N. Uno, Y. Tanaka, and K. Doi, p. 693 in “Advances in Superconductivity V,” Proc. ISS ‘82, Springer-Verlag, Tokyo (1992).Google Scholar
  8. 8.
    J. Kase, K. Togano, H. Kumakura, D.R. Dietderich, N. Irisawa, T. Morimoto, and H. Maeda, Jap. J. Appl. Phys. 29: L1096 (1990).CrossRefGoogle Scholar
  9. 9.
    J. Shimoyama, N. Tornita, T. Morimoto, H. Kitaguchi, H. Kumakura, K. Togano, H. Maeda, and K. Nomura, Jap. J. Appl. Phys. 31: L1999 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Naruaki Tomita
    • 1
  • Jun-ichi Shimoyama
    • 1
  • Hitoshi Kitaguchi
    • 2
  • Hiroaki Kumakura
    • 2
  • Kazumasa Togano
    • 2
  • Hiroshi Maeda
    • 2
  • Hiroki Fujii
    • 2
  • Katsumi Nomura
    • 3
  1. 1.Research CenterAsahi Glass Company, Ltd.YokohamaJapan
  2. 2.National Research Institute for MetalsTsukuba, IbarakiJapan
  3. 3.Advanced Research CenterHitachi Cable, Ltd.Tsuchiura, IbarakiJapan

Personalised recommendations