Tensile and Shear Fracture Behavior of Fiber Reinforced Plastics at 77k Irradiated by Various Radiation Sources

  • Karl Humer
  • Harald W. Weber
  • Elmar K. Tschegg
  • Shigenori Egusa
  • Robert C. Birtcher
  • Heiko Gerstenberg
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

The influence of radiation damage (gamma and neutrons) on the mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and 60Co γ—rays up to 1.8×108 Gy as well as with different reactor spectra up to a fast neutron fluence of 5×1022m−2(E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. The results on the influence of these radiation conditions and of the warm-up cycles on the mechanical properties of all FRPs are compared and discussed.

Keywords

Ultimate Tensile Strength Radiation Environment Neutron Fluences Polymer Matrix Composite Specific Fracture Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.S. Brown, Radiation effects in superconducting fusion-magnet materials, J. Nucl. Mat. 97: 1 (1981).CrossRefGoogle Scholar
  2. 2.
    Insulators for Fusion Applications, IAEA-TECDOC-417, IAEA, Vienna (1987).Google Scholar
  3. 3.
    R.R. Coltman, jr., Organic insulators and the copper stabilizer for fusion reactor magnets, J. Nucl. Mat. 108and109: 559 (1982).Google Scholar
  4. 4.
    S. Egusa, M.A. Kirk, and R.C. Birtcher, Effects of neutron irradiation on polymer matrix composites at 5K and at room temperature, I. Absorbed dose calculation, J. Nucl. Mat. 148: 43 (1987).CrossRefGoogle Scholar
  5. 5.
    S. Egusa, M.A. Kirk, and R.C. Birtcher, Effects of neutron irradiation on polymer matrix composites at 5K and at room temperature, II. Degradation of mechanical properties, J. Nucl. Mat. 148: 43 (1987).CrossRefGoogle Scholar
  6. 6.
    S. Egusa and M. Hagiwasa, Mechanical properties of polymer matrix composites at 77 K and at room temperature after irradiation with 60Co y-rays, Cryogenics 26: 417 (1986).CrossRefGoogle Scholar
  7. 7.
    G.F. Hurley and R.R. Coltman, jr., Organic materials for fusion reactor applications, J. Nucl. Mat. 122and123: 1327 (1984).Google Scholar
  8. 8.
    S. Nishijima, T. Okada, T. Hirokawa, J. Yasuda, and Y. Iwasaki, Radiation damage of organic composite material for fusion magnet, Cryogenics 31: 273 (1991).CrossRefGoogle Scholar
  9. 9.
    S. Egusa, Anisotropy of radiation-induced degredation in mechanical properties of fabric-reinforced polymer-matrix composites, J. Mat. Sci. 25: 1863 (1990).CrossRefGoogle Scholar
  10. 10.
    R.R. Coltman, jr. and C.E. Klabunde, Mechanical strength of low-temperature-irradiated polyimides: A five-to-tenfold improvement in dose resistance over epoxies, J. Nucl. Mat. 103and104: 7 (1981).Google Scholar
  11. 11.
    S. Egusa, Effects of neutrons and gamma-rays on polymer matrix composites as low-temperature materials, Radiat. Phys. Chem. 37: 147 (1991).Google Scholar
  12. 12.
    S. Egusa, M.A. Kirk, R.C. Birtcher, and M. Hagiwara, Annealing effects on the mechanical properties of organic composite materials irradiated with gamma-rays, J. Nucl. Mat. 127: 146 (1985).CrossRefGoogle Scholar
  13. 13.
    S. Nishijima and T. Okada, Low temperature irradiation effects on mechanical properties of epoxy used in superconducting magnets, Cryogenics 18: 215 (1978).CrossRefGoogle Scholar
  14. 14.
    S. Egusa, Radiation resistance of polymer composites at 77K: Effects of reinforcing fabric type, specimen thickness, radiation type and irradiation atmosphere, Cryogenics 31: 7 (1991).CrossRefGoogle Scholar
  15. 15.
    H.W. Weber, E. Kubasta, W. Steiner, H. Benz, and K. Nylund, Low temperature neutron and gamma irradiation of glass fiber reinforced epoxies, J. Nucl. Mat. 115: 11 (1983).CrossRefGoogle Scholar
  16. 16.
    R.E. Forces, JD. Memory, and N. Naranong, Effect of 1.33 MeV y - radiation and 0.5 MeV electrons on the mechanical properties of graphite fiber composites, J. Appl. Poly. Sci. 26: 2061 (1981).CrossRefGoogle Scholar
  17. 17.
    S. Egusa, M.A. Kirk, R.C. Birtcher, and M. Hagiwara, Neutron and y-ray irradiation effects in composite organic insulators, J. Nucl. Mat. 133and134: 795 (1985).Google Scholar
  18. 18.
    H.W. Weber, and E.K. Tschegg, Test program for mechanical strength measurements on fiber reinforced plastics exposed to radiation environments, Adv. Cryog. Eng. 36: 863 (1990).Google Scholar
  19. 19.
    P. Zdenek, and P. Bazant, Size effect in blunt fracture-concrete, rock, metal,Google Scholar
  20. J. Eng. Mech. 110:518 (1984).Google Scholar
  21. 20.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture-mechanical characterization of fiber reinforced plastics in the crack-opening-mode (mode I), Adv. Cryog. Eng. 38A: 387 (1992).Google Scholar
  22. 21.
    E.K. Tschegg, K. Humer, and H.W. Weber, Shear fracture tests (mode II) on fiber reinforced plastics at room and cryogenic temperatures, Adv. Cryog. Eng. 38A: 355 (1992).Google Scholar
  23. 22.
    E.K. Tschegg, K. Humer, and H.W. Weber, Influence of test geometry on tensile strength of fiber reinforced plastics at cryogenic temperatures, Cryogenics 31: 312 (1991).CrossRefGoogle Scholar
  24. 23.
    K. Humer, E.K. Tschegg, H.W. Weber, K. Noma, J. Yasuda, and Y. Iwasaki, Specimen size effect on tensile strength of three-dimensionally glass-fabric reinforced plastics at room and cryogenic temperatures, Cryogenics 33: 162 (1993).CrossRefGoogle Scholar
  25. 24.
    K. Humer, E.K. Tschegg, and H.W. Weber, Specimen size effect and fracture mechanical behavior of fiber reinforced plastics in the crack opening mode (mode I),Google Scholar
  26. Cryogenics (ICMC Supplement) 32:14 (1992).Google Scholar
  27. 25.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode II on fiber reinforced plastics, J. Mat. Sci.,to be publishedGoogle Scholar
  28. 26.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode Ion fibre reinforced plastics, J. Mat. Sci. 28: 2471 (1993).CrossRefGoogle Scholar
  29. 27.
    K. Humer, E.K. Tschegg, and H.W. Weber, Small specimens and new testing techniques for fiber reinforced plastics in the crack opening mode (mode I) and in the shear mode (mode II), Adv. Cryog. Eng. to be publishedGoogle Scholar
  30. 28.
    H.W. Weber, H. Bock, and E. Unfried, Neutron dosimetry and damage calculations for the TRIGA Mark-II reactor in Vienna, J. Nucl. Mat. 137: 236 (1986).CrossRefGoogle Scholar
  31. 29.
    L.R. Greenwood and R.K. Smither, SPECTER: Neutron damage calculations for materials irradiations, ANL/FPP/TM-197 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Karl Humer
    • 1
  • Harald W. Weber
    • 1
  • Elmar K. Tschegg
    • 2
  • Shigenori Egusa
    • 3
  • Robert C. Birtcher
    • 4
  • Heiko Gerstenberg
    • 5
  1. 1.Atominstitut der Österreichischen UniversitätenWienAustria
  2. 2.Institut für Angewandte und Technische PhysikTU WienWienAustria
  3. 3.Takasaki Radiation Chemistry Research EstablishmentJapan Atomic Energy Research InstituteTakasaki-shi, GunmaJapan
  4. 4.Argonne National LaboratoryMaterials Science DivisionArgonneUSA
  5. 5.Fakultät für Physik, E 21TU MünchenGarchingGermany

Personalised recommendations