Small Specimens and New Testing Techniques for Fiber Reinforced Plastics in the Crack Opening Mode (Mode I) and in the Shear Mode (Mode II)

  • Karl Humer
  • Elmar K. Tschegg
  • Harald W. Weber
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Newly developed testing techniques and evaluation procedures for the fracture mechanical characterization of fiber reinforced plastics (FRPs) based on the fracture energy concept are presented. The splitting (mode I) as well as the intralaminar shear test (mode II)are experimentally simple; the loading device and the sample geometries are small and well suited for measurements at low temperatures on both unirradiated and irradiated samples. We obtain from these tests load versus displacement curves, which contain all the information needed to characterize the fracture behavior of the materials with subsequent numerical calculations. In addition, special attention was paid to “scaling” experiments, in order to investigate the influence of the sample geometries on the measured mechanical quantities and to achieve small sample dimensions, which are needed, e.g., for irradiation experiments.

Keywords

Acoustic Emission Fracture Energy Crack Opening Displacement Crack Opening Displacement Sample Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Weber and E.K. Tschegg, Test program for mechanical strength measurements on fiber reinforced plastics exposed to radiation environments, Adv. Cryog. Eng. 36: 863 (1990).Google Scholar
  2. 2.
    S. Hashemi, A.J. Kinloch, and J.G. Williams, Mechanics and mechanisms of delamination in a poly(ether sulphone)-fibre composite, Comp. Sci. Tech. 37: 429 (1990).CrossRefGoogle Scholar
  3. 3.
    G.M. Newaz and J. Ahmad, A simple technique for measuring mode I delamination energy release rate in polymeric composites, Eng. Fract. Mech. 33: 541 (1989).CrossRefGoogle Scholar
  4. 4.
    A.C. Garg, Intralaminar and interlaminar fracture in graphite/epoxy laminates, Eng. Fract. Mech. 23: 719 (1986).CrossRefGoogle Scholar
  5. 5.
    P.K. Sarkarand and S.K. Maiti, Prediction of mode I fracture toughness of a laminated fiber composite from matrix fracture toughness of the basic layer, Eng. Fract. Mech. 38: 71 (1991).CrossRefGoogle Scholar
  6. 6.
    H. Lau and R.E. Rowlands, Interlaminar fracture and AE studies of composites at RT and 77 K, Adv. Cryog. Eng. 36: 949 (1990).Google Scholar
  7. 7.
    S. Nishijima, T. Okada, T. Hirokawa, J. Yasuda, and Y. Iwasaki, Radiation damage of organic composite material for fusion magnet, Cryogenics 31: 273 (1991).CrossRefGoogle Scholar
  8. 8.
    S. Egusa, Anisotropy of radiation-induced degredation in mechanical properties of fabric-reinforced polymer-matrix composites, J. Mat. Sci. 25: 1863 (1990).CrossRefGoogle Scholar
  9. 9.
    S. Hashemi, A.J. Kinloch, and J.G. Williams, The analysis of interlaminar fracture in uniaxial fibre-polymer composites, Proc. R . Soc. Lond. A 427: 173 (1990).Google Scholar
  10. 10.
    D.F. Adams and D.E. Walrath, Iosipescu shear properties of SMC composites materials, Composite materials: Testing and Design (Sixth Conference). ASTM STP 787, American Soc. for Testing and Materials, 19 (1982).Google Scholar
  11. 11.
    J.A. Barnes, M. Kumosa, and D. Hull, Theoretical and experimental evaluation of the Iosipescu shear test, Comp. Sci. Tech. 28: 251 (1987).CrossRefGoogle Scholar
  12. 12.
    G.S. Giare, A. Herold, V. Edwards, and R.R. Newcomb, Fracture toughness of unidirectional graphite fibre reinforced/epoxy composite in mode II (forward shear), using a thin tubular specimen, Eng. Fract. Mech. 30: 531 (1988).CrossRefGoogle Scholar
  13. 13.
    P. Ifju and D. Post, A compact double notched specimen for in-plane shear testing, in Proc.: Spring Conf. Soc. for Exp. Mechanics (Boston, MA), 334 (1989).Google Scholar
  14. 14.
    H. Lau, H.H. Abdelmohsen, and M.K. Abdelsalam, Testing methods and fracture energy of composites at room and cryogenic temperature Adv. Cryog. Eng. 34: 83 (1988).Google Scholar
  15. 15.
    S.M. Lee, A comparison of fracture toughness of matrix controlled failure modes: Delamination and transverse cracking J. Comp. Mat. 20: 185 (1986).CrossRefGoogle Scholar
  16. 16.
    A.C. Garg and O. Ishai, Hygrothermal influence on delamination behavior of graphite/epoxy laminates, Eng. Fract. Mech. 22: 413 (1985).CrossRefGoogle Scholar
  17. 17.
    A.C. Garg and O. Ishai, Characterization of damage initiation and propagation in graphite/epoxy laminates by acoustic emission, Eng. Fract. Mech. 22: 595 (1985).CrossRefGoogle Scholar
  18. 18.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture-mechanical characterization of fiber reinforced plastics in the crack-opening-mode (mode I), Adv. Cryog. Eng. 38A: 387 (1992).Google Scholar
  19. 19.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode Ion fibre reinforced plastics, J. Mat. Sci. 28: 2471 (1993).CrossRefGoogle Scholar
  20. 20.
    Y. Kagawa, E. Nakata, and S. Yoshida, Fracture behavior of SiC matrix composites reinforced with helical tantalum fiber, American Society for Testing and Materials, Philadelphia, PA, ASTM STP 864: 27 (1985).Google Scholar
  21. 21.
    A. Daimaru, T. Hata, and M. Taya, Work of fracture in metal matrix composites, American Society for Testing and Materials, Philadelphia, PA, ASTM STP 864: 505 (1985).Google Scholar
  22. 22.
    S.M. Jeng, J.M. Yang, and C.J. Yang, Fracture mechanisms of fiber-reinforced titanium alloy matrix composites, Part III: Toughening behavior, Mat. Sci. Eng. A 138: 181 (1991).Google Scholar
  23. 23.
    C.G. Aronsson and J. Bäcklund, Tensile fracture of laminates with cracks, J. Comp. Mat. 20: 287 (1986).CrossRefGoogle Scholar
  24. 24.
    C.G. Aronsson and J. Bäcklund, Damage mechanics analysis of matrix effects in notched laminates, American Society for Testing and Materials, Philadelphia, PA, ASTM STP 907:134 (1986).Google Scholar
  25. 25.
    A. Hillerborg, Analysis of a single crack, in Proc.: Fracture Mechanics of Concrete, Developments in Civil Engineering, Vol. 7, edited by F. Wittmann, Elsevier Amsterdam, 7:223 (1983).Google Scholar
  26. 26.
    A. Hillerborg, A theoretical basis of a method to determine the fracture energy GF of concrete, Materiaux et Constructions 18: 25 (1985).Google Scholar
  27. 27.
    E.K. Tschegg, K. Humer, and H.W. Weber, Shear fracture tests (mode II) on fiber reinforced plastics at room and cryogenic temperatures, Adv. Cryog. Eng. 38A: 355 (1992).Google Scholar
  28. 28.
    P.E. Roelfstra, Thesis, Ecole Polytechnique Federale de Lausanne (1989).Google Scholar
  29. 29.
    J. Watkins, Fracture toughness test for soil-cement samples in mode II, Int. J. Fract. 23: 135 (1983).CrossRefGoogle Scholar
  30. 30.
    J. Davies, C.W.A. Yim, and T.G. Morgan, Determination of fracture parameters of a punch-through shear specimen, Int. J. of Cement Comp. and Lightweight Concrete 9: 33 (1987).CrossRefGoogle Scholar
  31. 31.
    J. Davies, Numerical study of punch-through shear specimen in mode 11 testing for cementitious materials, Int. J. of Cement Comp. and Lightweight Concrete 10: 3 (1988).CrossRefGoogle Scholar
  32. 32.
    B. Hillemeier, Thesis, University of Karlsruhe (1976).Google Scholar
  33. 33.
    B. Hillemeier and H.K. Hilsdorf, Fracture mechanics studies on concrete compounds, Cement and Concrete Research 7: 523 (1977).CrossRefGoogle Scholar
  34. 34.
    E.K. Tschegg, Prüfeinrichtung zur Ermittlung von bruchmechanischen Kennwerten sowie hiefür geeignete PrütkÖrper, Austrian Patent 233/86, AT-390328 (1986).Google Scholar
  35. 35.
    E.K. Tschegg, New equipments for fracture test on concrete, Materials Testing 33: 338 (1991).Google Scholar
  36. 36.
    P. Zdenek and P. Bazant, Size effect in blunt fracture-concrete, rock, metal, J. Eng. Mech. 110: 518 (1984).CrossRefGoogle Scholar
  37. 37.
    E.K. Tschegg, K. Humer, and H.W. Weber, Influence of test geometry on tensile strength of fiber reinforced plastics at cryogenic temperatures, Cryogenics 31: 312 (1991).CrossRefGoogle Scholar
  38. 38.
    K. Humer, E.K. Tschegg, H.W. Weber, K. Noma, J. Yasuda, and Y. Iwasaki, Specimen size effect on tensile strength of three-dimensionally glass-fabric reinforced plastics at room and cryogenic temperatures, Cryogenics 33: 162 (1993).CrossRefGoogle Scholar
  39. 39.
    K. Humer, E.K. Tschegg, and H.W. Weber, Specimen size effect and fracture mechanical behavior of fiber reinforced plastics in the crack opening mode (mode I), Cryogenics (ICMC Supplement) 32: 14 (1992).Google Scholar
  40. 40.
    E.K. Tschegg, K. Humer, and H.W. Weber, Fracture tests in mode II on fiber reinforced plastics, J. Mat. Sci.,will be publishedGoogle Scholar
  41. 41.
    K. Humer, E.K. Tschegg, and H.W. Weber, Fracture behavior in mode I and mode II of glass fiber reinforced plastics at room temperature and at 77 K, Cryogenics (ICMC Supplement) 32: 1 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Karl Humer
    • 1
  • Elmar K. Tschegg
    • 2
  • Harald W. Weber
    • 1
  1. 1.Atominstitut der Österreichischen UniversitätenWienAustria
  2. 2.lnstitut für Angewandte und Technische PhysikTU WienWienAustria

Personalised recommendations