Cooling Strings of Superconducting Devices Below 2 K: The Helium II Bayonet Heat Exchanger

  • Ph. Lebrun
  • L. Serio
  • L. Tavian
  • R. van Weelderen
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)

Abstract

High-energy particle accelerators and colliders contain long strings of superconducting devices — acceleration RF cavities and magnets — operating at high field, which may require cooling in helium II below 2 K. In order to maintain adequate operating conditions, the applied or generated heat loads must be extracted and transported with minimum temperature difference. Conventional cooling schemes based on conductive or convective heat transport in pressurized helium II very soon reach their intrinsic limits of thermal impedance over extended lengths. We present the concept of helium II bayonet heat exchanger, which has been developed at CERN for the magnet cooling scheme of the Large Hadron Collider (LHC), and describe its specific advantages as a slim, quasi-isothermal heat sink. Experimental results obtained on several test set-ups and a prototype magnet string have permitted to validate its performance and sizing rules, for transporting linear heat loads in the W. m”1 range over distances of several tens of meters.

Keywords

Heat Exchanger Large Hadron Collider Heat Exchanger Tube Superfluid Helium Corrugate Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Lebrun, Cryogenic systems for accelerators, in: “Frontiers in Accelerator Technology”, S.I. Kurokawa, M. Month and S. Turner, editors, World Scientific, Singapore (1996), pp. 681–700.Google Scholar
  2. 2.
    Ph. Lebrun, Superfluid helium as a technical coolant, in: “Atti XV Congresso Nazionale sulla Trasmissione del Calore”, Edizioni ETS, Politecnico di Torino (1997), pp. 61–77.Google Scholar
  3. 3.
    G. Claudet and R. Aymar, Tore Supra and helium II cooling of large high-field magnets, in: “Advances in Cryogenic Engineering” Vol. 35A (1990), pp. 55–67.CrossRefGoogle Scholar
  4. 4.
    L.R. Evans, The Large Hadron Collider project, in: “Proceedings of ICEC16/ICMC Kitakyushu”, T. Haruyama, T. Mitsui and K. Yamafuji, editors, Elsevier Science, Oxford (1997), pp. 45–52.Google Scholar
  5. 5.
    G. Bon Mardion, G. Claudet and P. Seyfert, Practical data on steady-state heat transport in superfluid helium at atmospheric pressure, Cryogenics 19 (1979), pp. 45–47.CrossRefGoogle Scholar
  6. 6.
    J.M. Mandhane, G.A. Gregory and K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiphase Flow 1 (1974), pp. 537–553.CrossRefGoogle Scholar
  7. 7.
    Y. Taitel and A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE Journal 22:1 (1976), pp. 47–55.CrossRefGoogle Scholar
  8. 8.
    J. Casas-Cubillos, A. Cyvoct, Ph. Lebrun, M. Marquet, L. Tavian and R. van Weelderen, Design concept and first experimental validation of the superfluid helium system for the Large Hadron Collider (LHC) project at CERN, Cryogenics 32 ICEC Supplement (1992), pp. 118–121.CrossRefGoogle Scholar
  9. 9.
    A. Bézaguet, J. Casas-Cubillos, Ph. Lebrun, M. Marquet, L. Tavian and R. van Weelderen, The superfluid helium model cryoloop for the CERN Large Hadron Collider (LHC), in: “Advances in Cryogenic Engineering” Vol. 39A (1994), pp. 649–656.CrossRefGoogle Scholar
  10. 10.
    B. Flemsaeter, “Contribution to the Dynamic Analysis and Optimal Control of the Superfluid Helium Cooling Loop for the LHC Magnet String”, Thesis, NTU Trondheim, Norway (1995)Google Scholar
  11. 11.
    A. Gauthier, L. Grimaud, B. Rousset, A. Bézaguet and R. van Weelderen, Thermohydraulic behaviour of He II in stratified co-current two-phase flow, in: “Proceedings of ICEC16/ICMC Kitakyushu”, T. Haruyama, T. Mitsui and K. Yamafuji, editors, Elsevier Science, Oxford (1997), pp. 519–522.Google Scholar
  12. 12.
    B. Rousset, A. Gauthier, L. Grimaud and R. van Weelderen, Latest developments in He II co-current two-phase flow studies, paper presented at this conference.Google Scholar
  13. 13.
    M.M. Kado, Thermal conductance measurements on the LHC helium II heat exchanger pipes, CERN Report AT/95–34 (CR) (1995).Google Scholar
  14. 14.
    K. Kauder, “Strömungs- und Widerstandsverhalten in Gewellten Rohren”, Thesis, Technische Universität Hannover, Germany (1971).Google Scholar
  15. 15.
    F. Déliot, private communication (1996).Google Scholar
  16. 16.
    A. Bézaguet, J. Casas-Cubillos, B. Flemsaeter, B. Gaillard-Grenadier, Th. Goiffon, H. Guinaudeau, Ph. Lebrun, M. Marquet, L. Serio, A. Suraci, L. Tavian and R. van Weelderen, The superfluid helium system for the LHC Test String, design, construction and first operation, in: “Advances in Cryogenic Engineering” Vol. 41A (1996), pp. 777–784.CrossRefGoogle Scholar
  17. 17.
    M. Chorowski, W. Erdt, Ph. Lebrun, G. Riddone, L. Serio, L. Tavian, U. Wagner and R. van Weelderen, A simplified distribution scheme for the Large Hadron Collider, paper presented at this conference.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ph. Lebrun
    • 1
  • L. Serio
    • 1
  • L. Tavian
    • 1
  • R. van Weelderen
    • 1
  1. 1.LHC DivisionCERNGeneva 23Switzerland

Personalised recommendations