A Simplified Cryogenic Distribution Scheme for the Large Hadron Collider

  • M. Chorowski
  • W. Erdt
  • Ph. Lebrun
  • G. Riddone
  • L. Serio
  • L. Tavian
  • U. Wagner
  • R. van Weelderen
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)

Abstract

The Large Hadron Collider (LHC), currently under construction at CERN, will make use of superconducting magnets operating in superfluid helium below 2 K. The reference cryogenic distribution scheme was based, in each 3.3 km sector served by a cryogenic plant, on a separate cryogenic distribution line which feeds elementary cooling loops corresponding to the length of a half-cell (53 m). In order to decrease the number of active components, cryogenic modules and jumper connections between distribution line and magnet strings a simplified cryogenic scheme is now implemented, based on cooling loops corresponding to the length of a full-cell (107 m) and compatible with the LHC requirements. Performance and redundancy limitations are discussed with respect to the previous scheme and balanced against potential cost savings.

Keywords

Heat Exchanger Large Hadron Collider Superfluid Helium Cryogenic System Distribution Header 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The LHC Study Group, “The Large Hadron Collider, Conceptual Design,” CERN Report AC/95–05(LHC) (1995).Google Scholar
  2. 2.
    U. Wagner, “The LHC refrigerators with surface located cold boxes for the temperature range 300–4.5 K,” LHC Project Note 70 (1996).Google Scholar
  3. 3.
    V. Benda, A. Bézaguet, J. Casas-Cubillos, S. Claudet, W. Erdt, Ph. Lebrun, G. Riddone, V. Sergo, L. Serio, L. Tavian, B. Vuillerme, R. van Weelderen and U. Wagner, Conceptual design of the cryogenic system for the Large Hadron Collider, in: “Proceeding of EPAC96”, S. Meyers, A. Pacheco, R. Pascual, Ch. Petit-Jean-Genaz and J. Poole, editors, Institute of Physics Publishing, Bristol and Philadelphia (1996), p. 361–363.Google Scholar
  4. 4.
    M. Bona, P. Cruikshank, W. Erdt, J.L. Périnet-Marquet, A. Poncet, P. Rohmig, U. Wagner and T. Wikberg, “Cryogenic and Vacuum Sectorization of the LHC Arcs,” LHC Project Report 60 (1996)Google Scholar
  5. 5.
    B. Hubert, “Modeling and Experimental Analysis of the Thermohydraulics of Resistive Transitions on the LHC Prototype Magnet String,” LHC Project Note 86 (1997).Google Scholar
  6. 6.
    M. Chorowski, B. Hilbert, L. Serio and R. van Weelderen, Thermohydraulics of Resistive Transitions of the LHC Prototype Magnet String: Theoretical Modelling and Experimental Results, paper presented at this conference.Google Scholar
  7. 7.
    A. Bézaguet et al, The LHC Test String: First Operational Experience, in: “Proceeding of EPAC96”, S. Meyers, A. Pacheco, R. Pascual, Ch. Petit-Jean-Genaz and J. Poole, editors, Institute of Physics Publishing, Bristol and Philadelphia (1996), p. 358–360.Google Scholar
  8. 8.
    Ph. Lebrun, L. Serio, L. Tavian and R. van Weelderen, Cooling Strings of Superconducting device below 2 K: The Helium II Bayonet Heat Exchanger, paper presented at this conference.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Chorowski
    • 1
  • W. Erdt
    • 1
  • Ph. Lebrun
    • 1
  • G. Riddone
    • 1
  • L. Serio
    • 1
  • L. Tavian
    • 1
  • U. Wagner
    • 1
  • R. van Weelderen
    • 1
  1. 1.LHC DivisionCERNGeneva 23Switzerland

Personalised recommendations