Surface Dependent Emission of Low Energy Electrons (Exoemission) from Apatite Samples

  • J. E. Davies

Abstract

Exoemission (EE) phenomena, grouped collectively under the title “Kramer effect” include non-isothermally stimulated relaxation of irradiation-induced perturbations of crystalline lattices known as Thermally Stimulated Exoemission (TSEE). Liberated electrons may originate from metastable excited states via the conduction band (volume effect) or from phase changes of surface adsorption species (surface effect). However, in all cases, changes in the surface state may modify the emission. This paper presents TSEE observed in apatites using an open-window Geiger counter. In a “model” series, emission maxima common to FAp’s of synthetic mineral and biological origins demonstrate surface and volume dependent emission within the series. Similar emission characteristics observed from biological apatites of differing origins indicates that the defects responsible are intrinsic to the apatite lattice and at least partially independent of chemical substitutions. Since electron availability is of fundamental importance to biological hard tissue reactivity, the potential of exoemission as an adjunct to other surface analysis techniques is discussed.

Keywords

Central Processing Unit Glow Curve Thermal Pretreatment OSEE Spectrum Biological Apatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Physico-chemie et Crystallographie des apatites d’interet biologique“. Colloques Internationaux CNRS No 230 Paris France (1975).Google Scholar
  2. 2.
    D. Langdon, E. Dykes and R.W. Fearnhead, Defects, diffusion and dissolution in biological and synthetic apatite. Pages 381–388 (1973) (Ref. 1).Google Scholar
  3. 3.
    P.D. Johnson, Dichroic color centres in calcium fluorophosphate, J. Appl. Phys. 32: 127 (1961).CrossRefGoogle Scholar
  4. 4.
    E.F. Apple, Observations on the formation of color centres in calcium halophosphates, J. Electrochem. Soc. 110: 374 (1963).CrossRefGoogle Scholar
  5. 5.
    R.K. Swank, Colour centres in X-irradiated halophosphate crystals, Phys. Rev. 135 (lA): A266 (1964).CrossRefGoogle Scholar
  6. 6.
    J.E. Davies, Preliminary results of the exoelectron properties of apatites, 5th Int. Symp. on Exoelectron Emission and Dosimetry, Zvikov, Czech.: 203 (1976).Google Scholar
  7. 7.
    P.D. Johnson, Some optical properties of powder and crystal halophosphate phosphors, J. Electrochem. Soc. 108: 159 (1960).CrossRefGoogle Scholar
  8. 8.
    A. Boyde, Cutting teeth in the SEM, Scanning 1: 157 (1978).CrossRefGoogle Scholar
  9. 9.
    D. Spitzer and J.J. Ten Bosch, The absorption and scattering light in bovine and human dental enamel, Calc. Tiss. Res. 17: 129 (1975).CrossRefGoogle Scholar
  10. 10.
    J. Behari, S.K. Guha and P.N. Agarwal, Absorption spectra in bone, Calcif. Tiss. Res. 23: 113 (1977)CrossRefGoogle Scholar
  11. 11.
    R.O. Becker and F.M. Brown, Photoelectric effects in human bone, Nature (Lond.) 206; 1325 (1965).CrossRefGoogle Scholar
  12. 12.
    P. Braunlich (Ed), “Thermally Stimulated Relaxation in Solids”, Topics in Applied Physics Vol 37, Springer-Verlag, Berlin (1979).Google Scholar
  13. 13.
    R. Chen and Y. Kirsh, “Analysis of Thermally Stimulated Processes”, Pergamon Press, Oxford (1981).Google Scholar
  14. 14.
    C.J. Maletskos, Thermoluminescence of bone, MIT Annual Report No. MIT 652–1: 95 (1965).Google Scholar
  15. 15.
    J. Kastner, R. Hukkoo and B.G. Oltman, Thermoluminescence in bone, Argonne Nat. Lab; Rad. Phys. Div. Annual Report: 30 (1965).Google Scholar
  16. 16.
    F.L. Bordell and J. Kastner, Thermoluminescence in bone and bone-like materials, Argonne Nat. Lab; Rad. Phys. Div. Annual Report No. ANL-7489, Biology and Medicine, July 1967-June 1968.Google Scholar
  17. 17.
    D.G. Willhoit and A.D. Poland, Thermoluminescent characteristics of irradiated enamel and dentine, Health Phys. 15: 91 (1968).Google Scholar
  18. 18.
    M. Jasinska and T. Niewiadomski, Thermoluminescence of biological materials, Nature (Lond.) 227: 1159 (1970).CrossRefGoogle Scholar
  19. 19.
    C. Christodoulides, Problems in TL dating bone, Proc. 8th Symp. Archeometry and Archeological Prospecting (1971)Google Scholar
  20. 20.
    C. Christodoulides, Thermoluminescent dating of materials of extraterrestial or biological origin, Ph.D. Thesis, University of Birmingham (1972).Google Scholar
  21. 21.
    C. Christodoulides and J.H. Fremlin, TL of biological materials, Nature 232: 257 (1971).CrossRefGoogle Scholar
  22. 22.
    H.S.T. Driver, The preparation of thin slices of bone and shell for thermoluminescence, Pact 3: 290 (1979).Google Scholar
  23. 23.
    L. Benko and L. Koszorus, Thermoluminescence dating of dental enamel, Nuc. Inst. and Meth. 175: 227 (1980).CrossRefGoogle Scholar
  24. 24.
    A.G. Wintle, Anomalous fading of thermoluminescence in mineral samples, Nature 245: 143 (1973).CrossRefGoogle Scholar
  25. 25.
    I.K. Bailiff, Use of phototransfer for the anomalous fading of thermoluminescence, Nature 264: 531 (1976).CrossRefGoogle Scholar
  26. 26.
    K.S.V. Nambi, Influence of rare earth impurities on TL characteristics, Pact 3: 298 (1979).Google Scholar
  27. 27.
    J.E. Vaz, Effects of natural radioactivity on the thermoluminescence of apatite crystals at Cerro del Mercado, Mexico, Modern Geology 7; 171 (1980).Google Scholar
  28. 28.
    J. Alves, J.E. Davies and S.A. Durrani, Thermoluminescence of fluorapatites and other mineral apatites: high-temperature emission and the effects of radiation damage, Proc. 3rd Int. Symp. on TL and ESR dating Elsinore, Denmark 26–31 July 1982 to be published in Pact 3: July 1983.Google Scholar
  29. 29.
    L. Suchow, Studies of color centres produced in apatite halophosphates by shortwave ultraviolet radiation. J. Electrochem. Soc. 108: 847 (1961).CrossRefGoogle Scholar
  30. 30.
    V.V. Ratnam, R. Jayaprakash and N.P. Daw, Thermoluminescence and thermoluminescence spectra of synthetic fluorapatite. J. Luminescence 21: 417 (1980).CrossRefGoogle Scholar
  31. 31.
    D. Lapraz, A. Baumer and P. Iacconi, On the thermoluminescence properties of hydroxyapatie Ca5(PO4)30H, Phys. Stat. Sol. (a) 54: 605 (1979).CrossRefGoogle Scholar
  32. 32.
    S. Kolberg, S. Prydz and S. Dahm, Thermally stimulated luminescence in dental hard tissue and bone, Calc. Tiss. Res. 17: 9 (1974).CrossRefGoogle Scholar
  33. 33.
    M.R. Chapman, A.G. Miller and T.G. Stoebe, Thermoluminescence in hydroxyapatite, Med. Phys. 6 (6): 494 (1979).CrossRefGoogle Scholar
  34. 34.
    H.S.T. Driver, personal communication.Google Scholar
  35. 35.
    Ist Int. Symp. on Exoelectron Emission, Innsbruc, Austria, Acta. Phys. Aust. 10: 313 (1975).Google Scholar
  36. 36.
    J. Kramer, “Der Metallische Zustand”, Vanderhoek and Ruprecht, Gottingen (1950).Google Scholar
  37. 37.
    J. Kramer, Anwendung der Exoelectronen, Acta. Phys. Aust. 10: 392 (1957).Google Scholar
  38. 38.
    H. Glafeke, “Exoemission” Chapter 5 in Ref (12).Google Scholar
  39. 39.
    G. Holzapfel and R. Nink, Zum ausseren Photoeffect on Electronen-haftzentren in kristallinen Festkorpern (Optisch stimulierte Exoelektronenemission - OSEE) P.T.B. - Mitt. 83: 207 (1977).Google Scholar
  40. 40.
    A. Bohun, The physics of exoelectron emission of ionic crystals, Proc. 3rd Int. Symp. on Exoelectrons, Braunschweig 3–12 July (1970).Google Scholar
  41. 41.
    G. Holzapfel, The evolution of volume concepts to describe exoelectron emission, 5th Int. Symp. Exoelectron Emission and Dosimetry Zvikov, Czech: 19 (1976).Google Scholar
  42. 42.
    A. Scharmann and W. Kriegseis, Influence of surface parameters on exoelectron emission, 5th Int. Symp. Exoelectron Emission and Dosimetry Zvikov, Czech: 5 (1976)Google Scholar
  43. 43.
    L.I. Samuelsson, Mechanism for exoelectron emission mainly from LiF, Acta Radiabgica suppl. 359: 1 (1979).Google Scholar
  44. 44.
    I.V. Krylova, Exoemission and the physico-chemistry of the surface - recent development, Proc. VIth Int. Symp. Exoelectron Emission and Applications, Ahrenshoop G.D.R.: 80 (1979)Google Scholar
  45. 45.
    L.G. Petersson, G. Frostell and A. Lodding, Secondary ion microanalysis of fluorine in apatites of biological interest. Z: Naturforsch 29: 417 (1974).Google Scholar
  46. 46.
    G. Holzapfel, Zur exoelektronen-emission (Kramer-effekt) von berylliumoxid, Thesis, Technische Universitat Berlin (1968).Google Scholar
  47. 47.
    M. Petel, Recherches sur la dosimetrie par emissions electroniques stimulees, Thesis, Univ. Paul. Sabatier, Toulouse (No 318 ) (1976).Google Scholar
  48. 48.
    J.E. Davies and P. Ramsay, A microcomputer-controlled apparatus for simultaneous measurement of exoelectron emission and thermoluminescence, Proc. VIIth Int. Symp. on Exoelectron Emission and Applications Strasbourg, France, March 1983, to be published Rad. Proc. Dos. 4: (1983).Google Scholar
  49. 49.
    R. Nink and G. Holzapfel, Selective electron emission from f-centres in CsCl. J. de Phys. 3: 19 (1973)CrossRefGoogle Scholar
  50. 50.
    I.V. Krylova, The physico-chemical nature of exoelectron emission. 4th Int. Symp. Exoelectron Emission and Dosimetry Liblice Czech: 145 (1973).Google Scholar
  51. 51.
    D.M. Todor, “Thermal Analysis of Minerals”, Abacus Press (1976).Google Scholar
  52. 52.
    D.W. Holcomb and R.A. Young, Thermal decomposition of human tooth enamel, Calc. Tiss. Int. 31: 189 (1980).CrossRefGoogle Scholar
  53. 53.
    F.M. Ryan, R.C. Ohlmann, J. Murphy, R. Mazelsky, G.R. Wagner and R.W. Warren, Optical properties of divalent manganese in calcium fluorophosphate, Phys. Rev. B2 (7): 2341 (1970).CrossRefGoogle Scholar
  54. 54.
    J. Alves, Ph.D. thesis, in preparation.Google Scholar
  55. 55.
    J.E. Davies, Exoelectron spectra of apatites of synthetic, mineral and biological orgin, Proc. VIth Int. Symp. Exoelectron Emission and Applications, Ahrenshoop G.D.R. (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. E. Davies
    • 1
  1. 1.Department of AnatomyUniversity of BirminghamBirminghamUK

Personalised recommendations