Fracto-Emission from Adhesive Failure

  • J. Thomas Dickinson

Abstract

Fracto-emission (FE) is the emission of particles and photons during and after fracture of materials. The types of particles that have been observed include electrons (EE), negative and positive ions (NIE and PIE), neutral species in both ground states (NE) and in excited states (NE*), and visible photons (phE)—often called triboluminescence.(1,2) This emission can often serve as a sensitive probe of crack growth and may prove to be a useful tool for investigating molecular and microscopic events accompanying crack formation and for studying the details of failure modes in a variety of materials. These effects are also of interest in terms of their relations to electrostatic consequences of bond breaking (e.g., noise generated in sensitive circuits under stress, grinding of materials in confined spaces, and mechanical and interfacial effects associated with explosives and solid propellents), the detection of fracture inside the earth’s crust, and the transport of atoms and gases in geological systems.

Keywords

Fracture Surface Fractal Dimension Acoustic Emission Photon Emission Adhesive Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. I. Zink, Squeezing light out of crystals: Triboluminescence, Naturwissenschaften, 68, 507–512 (1981).CrossRefGoogle Scholar
  2. 2.
    A. J. Walton, Triboluminescence, Adv. Phys., 26, 887–948 (1977).CrossRefGoogle Scholar

Metal Oxides

  1. 3.
    J. T. Dickinson, P. Braunlich, L. Larson, and A. Marceau, Characteristic emission of negatively charged particles during tensile deformation of oxide-covered aluminum alloys, Appl. Surf. Sci. 1, 515 (1978).CrossRefGoogle Scholar
  2. 4.
    L. A. Larson, J. T. Dickinson, P. Braunlich, and D. Snyder, The emission of neutral particles from anodized aluminum surfaces during tensile deformation, J. Vac. Sci. Technol. 16, 590 (1979).CrossRefGoogle Scholar
  3. 5.
    D. L. Doering, T. Oda, J. T. Dickinson, and P. Braunlich, Characterization of anodic oxide coatings on aluminum by tribostimulated exoemission, Appl. Surf. Sci. 3, 196 (1979).CrossRefGoogle Scholar
  4. 6.
    J. T. Dickinson, D. B. Snyder, and E. E. Donaldson, Acoustic emission and electron emission during deformation of anodized aluminum, J. Vac. Sci. Technol. 17, 429 (1980).CrossRefGoogle Scholar
  5. 7.
    J. T. Dickinson, D. B. Snyder, and E. E. Donaldson, Electron and acoustic emission accompanying oxide coating fracture, Thin Solid Films 72, 223 (1980).CrossRefGoogle Scholar
  6. 8.
    J. T. Dickinson, E. E. Donaldson, and D. B. Snyder, Emission of electrons and positive ions upon fracture of oxide films, J. Vac. Sci. Technol. 18, 460 (1981).CrossRefGoogle Scholar

Inorganic Materials

  1. 9.
    J. T. Dickinson, E. E. Donaldson, and M. K. Park, The emission of electrons and positive ions from fracture of materials, J. Mater. Sci. 16, 2897 (1981).CrossRefGoogle Scholar
  2. 10.
    J. Wollbrandt, V. Bruckner, and E. Linke, Investigations of mechanically induced excited states on cleavage planes of ionic crystals I., Phys. Status Solidi A 77, 545–552 (1983).CrossRefGoogle Scholar
  3. 11.
    J. Wollbrandt, V. Bruckner, E. Linke, Investigations of mechanically induced excited states on cleavage planes in ionic crystals II, Phys. Status Solidi A 78, 163–168 (1983).CrossRefGoogle Scholar
  4. 12.
    J. T. Dickinson, W. D. Williams, and L. C. Jensen, Fracto-emission from lead zirconatetitanate, J. Am. Ceram. Soc. 68, 235 (1985).CrossRefGoogle Scholar
  5. 13.
    L. A. K’Singam, J. T. Dickinson, and L. C. Jensen, Electron and photon emission accompanying failure of metal/glass interfaces, J. Am. Ceram. Soc. 68, 510 (1985).CrossRefGoogle Scholar
  6. 14.
    J. T. Dickinson, L. C. Jensen, and M. R. McKay, Emission of atoms and molecules due to fracture of single crystal MgO, J. Vac. Sci. Technol. A 4, 1648 (1986).CrossRefGoogle Scholar
  7. 15.
    J. T. Dickinson, L. C. Jensen, and M. R. McKay, Neutral molecule emission from the fracture of crystalline MgO, J. Vac. Sci. Technol. A 5, 1162 (1987).CrossRefGoogle Scholar
  8. 16.
    S. C. Langford, J. T. Dickinson, and L. C. Jensen, Simultaneous measurements of the electron and photon emission accompanying fracture of single crystal MgO, J. Appl. Phys. 62, 1437 (1987).CrossRefGoogle Scholar
  9. 17.
    S. C. Langford, D. L. Doering, and J. T. Dickinson, The production of free charge carriers by fracture of single crystal silicon, Phys. Rev. Lett. 59, 2795 (1988).CrossRefGoogle Scholar
  10. 18.
    J. T. Dickinson, S. C. Langford, L. C. Jensen, J. Kelso, C. Pantano, and G. McVay, Fracto-emission from fused silica and sodium silicate glasses, J. Vac. Sci. Technol. A 6, 1084 (1988).CrossRefGoogle Scholar
  11. 19.
    K. C. Yoo, R. G. Rosemeer, J. T. Dickinson, and S. C. Langford, Anisotropy effects in fracto-emission from MgF2 single crystals, Appl. Phys. Lett. 55, 354 (1989).CrossRefGoogle Scholar
  12. 20.
    J. P. Mathison, S. C. Langford, and J. T. Dickinson, Concerning the post emission of electrons from cleavage surfaces of single crystal LiF, J. Appl. Phys. 65, 1923 (1989).CrossRefGoogle Scholar
  13. 21.
    J. T. Dickinson and L. C. Jensen, Fracto-emission from polymers, crystals, and interfaces, in: SPIE Proceedings Vol. 743, Fluorescence Detection I (R. Menzel, ed.), p. 68 (1987).Google Scholar
  14. 22.
    S. C. Langford, J. T. Dickinson, L. C. Jensen, and L. R. Pederson, Positive ion emission from the fracture of fused silica, J. Vac. Sci. Technol. A 7, 1829 (1989).CrossRefGoogle Scholar
  15. 23.
    J. T. Dickinson, D. L. Doering, and S. C. Langford, Electron emission and free charge carrier production due to fracture of single crystal silicon, in: Atomic and Molecular Processing of Electronic and Ceramic Materials: Preparation, Characterization, and Properties (I.H. Aksay, G. L. McVay, T. G. Staebe, and J. F. Wagner, eds.), pp. 39–46, Materials Research Society, Pittsburgh (1988).Google Scholar
  16. 24.
    S. C. Langford and J. T. Dickinson, The emission of particles and photons from the fracture of minerals and inorganic materials, Spectroscopic Characterization of Minerals and Their Surfaces (L. M. Coyne, S. W. S. McKeever, and D. F. Blake, eds.) ACS Symposium Series Publication No. 415, pp. 224–244, American Chemical Society Washington, D.C. (1989).Google Scholar

Adhesive Failure/Composites

  1. 25.
    B. V. Derjaguin, N. A. Krotova, and V. P. Smilga, Adhesion of Solids (Engl. Transi.), Consultants Bureau, New York (1978).CrossRefGoogle Scholar
  2. 26.
    J. T. Dickinson, M. K. Park, E. E. Donaldson, and L. C. Jensen, Fracto-emission accompanying adhesive failure, J. Vac. Sci. Technol. 20, 436 (1982).CrossRefGoogle Scholar
  3. 27.
    J. T. Dickinson and L. C. Jensen, Crack velocity dependence of electron emission during fracture in filled elastomers, J. Polym. Sci., Polym. Phys. Ed. 20, 1925 (1982).CrossRefGoogle Scholar
  4. 28.
    J. T. Dickinson, L. C. Jensen, and M. K. Park, Time correlations of electron and positive ion emission accompanying and following fracture of a filled elastomer, Appl. Phys. Lett. 41, 443 (1982).CrossRefGoogle Scholar
  5. 29.
    J. T. Dickinson, L. C. Jensen, and M. K. Park, Time-of-flight measurements of the mass-to-charge ratio of positive ion emission accompanying fracture, J. Mater. Sci. 17, 3173 (1982).CrossRefGoogle Scholar
  6. 30.
    J. T. Dickinson, L. C. Jensen, and M. K. Park, Mass-to-charge ratio and kinetic energy of positive ion emission accompanying fracture of a filled elastomer, Appl. Phys. Lett. 41, 827 (1982).CrossRefGoogle Scholar
  7. 31.
    J. T. Dickinson and L. C. Jensen, Correlations in time of electron and positive ion emission accompanying fracture, J. Vac. Sci. Technol. A 1, 1160 (1983).CrossRefGoogle Scholar
  8. 32.
    J. T. Dickinson, L. C. Jensen, and A. Jahan-Latibari, Fracto-emission from filled and unfilled elastomers (review article), Rubber Chem. Technol. 56, 927 (1984).CrossRefGoogle Scholar
  9. 33.
    J. T. Dickinson, L. C. Jensen, and A. Jahan-Latibari, Fracto-emission: The role of charge separation, J. Vac. Sci. Technol. A 2, 1112 (1984).CrossRefGoogle Scholar
  10. 34.
    J. T. Dickinson, Fracto-emission accompanying adhesive failure (review article), in: Adhesive Chemistry—Developments and Trends (L. H. Lee, ed.), Plenum Publishers, New York (1984).Google Scholar
  11. 35.
    J. T. Dickinson, A. Jahan-Latibari, and L. C. Jensen, Electron emission and acoustic emission from the fracture of graphite/epoxy composites, J. Mater. Sci. 20, 229 (1985).CrossRefGoogle Scholar
  12. 36.
    J. T. Dickinson, X. A. Shen, and L. C. Jensen, Peeling of pressure sensitive adhesives, Proceedings of the 30th National SAMPE Symposium (1985).Google Scholar
  13. 37.
    E. E. Donaldson, X. A. Shen, and J. T. Dickinson, Photon and radiowave emission from peeling pressure sensitive adhesives in air, Proceedings of the 30th National SAMPE Symposium (1985).Google Scholar
  14. 38.
    J. T. Dickinson, A. Jahan-Latibari, and L. C. Jensen, Fracto-emission from fiber-reinforced and particulate filled composites (review article), in: Polymer Composites and Interfaces (N. G. Kumar and H. Ishida, eds.), Plenum Publishers, New York (1985).Google Scholar
  15. 39.
    J. T. Dickinson and L. C. Jensen, Fracto-emission from filled and unfilled polybutadiene, J. Polym. Sci., Polym. Phys. Ed. 23, 873 (1985).CrossRefGoogle Scholar
  16. 40.
    J. T. Dickinson, M. J. Dresser, and L. C. Jensen, Time correlation of ion and electron emission from surfaces following fracture, in: Desorption Induced by Electronic Transitions (DIET II) (W. Brenig and D. Menzel, eds.), Springer-Verlag, Berlin (1985).Google Scholar
  17. 41.
    E. E. Donaldson, J. T. Dickinson, and X. A. Shen, Time and size correlations of photon and radiowave bursts from peeling pressure sensitive adhesives in air, J. Adhes. 19, 267 (1986).CrossRefGoogle Scholar
  18. 42.
    A. S. Castro, R. Corey, J. T. Dickinson, R. V. Subramanian, and Y. Eckstein, Correlation of photon and acoustic emission with failure events in model composites, Composites Sci. Technol. 30, 35 (1987).CrossRefGoogle Scholar
  19. 43.
    J. T. Dickinson and E. E. Donaldson, Autographs from peeling pressure sensitive adhesives: Direct recording of fracture induced photon emission, J. Adhes. 24, 199 (1987).CrossRefGoogle Scholar
  20. 44.
    J. T. Dickinson, L. C. Jensen, M. H. Miles, and R. Yee, Fracto-emission accompanying adhesive failure between rocket propellent constituents, J. Appl. Phys. 62, 2965 (1987).CrossRefGoogle Scholar
  21. 45.
    Ma Zhenyi, Fan Jiawen, and J. T. Dickinson, Properties of the photon emission accompanying the peeling of a pressure sensitive adhesive, J. Adhes. 25, 63 (1988).CrossRefGoogle Scholar
  22. 46.
    E. E. Donaldson and J. T. Dickinson, Autographs from peeling fiber reinforced pressure sensitive adhesives: Correlation with failure mechanisms, J. Adhes. 30, 13 (1989).CrossRefGoogle Scholar
  23. 47.
    J. T. Dickinson and A. S. Crasto, Fracto-emission accompanying the deformation and failure of crosslinked polymers and interfaces, in: Cross-linked Polymers: Chemistry, Properties and Applications (R. A. Dickie, S. S. Labana, and R. S. Bauer, eds.), pp. 145–168, ACS Symposium Series 367, American Chemical Society, Washington, D.C. (1988).CrossRefGoogle Scholar
  24. 48.
    J. T. Dickinson and L. C. Jensen, Fracto-emission from polymers, interfaces, and single crystals, to appear in: ASM Proceedings for 13th International Symposium for Testing and Failure Analysis, held at Los Angeles, November, 1987 (to appear).Google Scholar

Molecular Crystals

  1. 49.
    M. H. Miles and J. T. Dickinson, Fracto-emission from PETN and HMX single crystals, Appl. Phys. Lett. 41, 924 (1982).CrossRefGoogle Scholar
  2. 50.
    J. T. Dickinson, L. B. Brix, and L. C. Jensen, Electron and positive ion emission accompanying fracture of Wint-O-Green lifesavers and single crystal sucrose, J. Phys. Chem. 88, 1698 (1984).CrossRefGoogle Scholar
  3. 51.
    J. T. Dickinson, M. H. Miles, W. L. Elban, and R. G. Rosemeier, Fracto-emission from RDX single crystals, 7. Appl. Phys. 55, 3994 (1984).Google Scholar
  4. 52.
    M. H. Miles, J. T. Dickinson, and L. C. Jensen, Fracto-emission from single crystals of PETN, J. Appl. Phys. 57, 5048 (1985).CrossRefGoogle Scholar

Neat Polymers

  1. 53.
    J. T. Dickinson, L. C. Jensen, and A. Jahan-Latibari, The effect of cross-linking on fracto-emission from elastomers, J. Mater. Sci. 19, 1510 (1984).CrossRefGoogle Scholar
  2. 54.
    J. T. Dickinson, A. Jahan-Latibari, and L. C. Jensen, Fracto-emission from single fibers of Kevlar-49, J. Mater. Sci. 20, 1835 (1985).CrossRefGoogle Scholar
  3. 55.
    J. T. Dickinson, L. C. Jensen, and S. Bhattacharya, Fracto-emission from neat epoxy resin (review article), in: Die MakromoleChemi MacromoleSymp. 7, 129 (1987).Google Scholar

Electrical/Breakdown Effects

  1. 56.
    M. L. Klakken, J. T. Dickinson, and L. C. Jensen, Electrical breakdown induced by fracture, IEEE Trans. Electr. Insul. EI-19, 578 (1984).CrossRefGoogle Scholar
  2. 57.
    E. E. Donaldson, J. T. Dickinson, and S. K. Bhattacharya, Production and properties of éjecta produced by fracture of materials, J. Adhes. 25, 281 (1988).CrossRefGoogle Scholar
  3. 58.
    J. T. Dickinson, L. C. Jensen, and S. Bhattacharya, Fracto-emission from the failure of metal/epoxy interfaces, J. Vac. Sci. Technol. A 3, 1398 (1985).CrossRefGoogle Scholar
  4. 59.
    E. E. Donaldson, M. H. Miles, and J. T. Dickinson, Electrical charge measurements on éjecta from impact loading of explosive crystals, J. Mater. Sci. (to appear).Google Scholar
  5. 60.
    V. Bichevin and H. Kaambre, A possible manifestation of Auger processes in thermostimulated electron emission, Phys. Status Solidi A 44, K235–K238 (1971).CrossRefGoogle Scholar
  6. 61.
    M. L. Knotek, Electron- and photon-stimulated desorption, AIP Conference Proc. No.94, pp. 772–786 (1982).Google Scholar
  7. 62.
    M. Grayson and C. Wolf, J. Polym. Sci., Polym. Phys. Ed., 23, 1087 (1985).CrossRefGoogle Scholar
  8. 63.
    K. L. DeVries, Free radical processes in mechano-chemical degradation of plastics and rubbers, J. Appl. Polym. Sci., Appl. Polym. Symp. 35 (B. Ranby and J. F. Rabek, eds.) (1979).Google Scholar
  9. 64.
    S. C. Langford, Ma Zhenyi, and J. T. Dickinson, J. Mater. Res. 4, 1272 (1989).CrossRefGoogle Scholar
  10. 65.
    B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Fractal character of fracture surfaces of metals, Nature 308, 721–722 (1984).CrossRefGoogle Scholar
  11. 66.
    J. J. Mecholsky, T. J. Mackin, and D. E. Passoja, Self-similar crack propagation in brittle materials, in: Fractography of Glasses and Ceramics (J. R. Varner and V. D. Frechette, eds.), pp. 127–134, American Ceramic Society, Westerville, OH, USA (1988).Google Scholar
  12. 67.
    E. R. Underwood and Kingshuk Banerji, Fractals in fractography, Mater. Sci. Eng. 80, 1–14 (1986).CrossRefGoogle Scholar
  13. 68.
    E. Louis and F. Guinea, The fractal nature of fracture, Europhys. Lett. 3, 871–877 (1987).CrossRefGoogle Scholar
  14. 69.
    A. J. Markworth and J. K. McCoy, Chaotic dynamics in an atomistic model of environmentally assisted fracture, J. Mater. Res. 3, 675–686 (1988).CrossRefGoogle Scholar
  15. 70.
    Hiroaki Hara and Seiji Okayama, Fractal dimension and scaling behavior of cracks in a random medium: “Frequency-rank” distribution described by generalized random walks, Phys. Rev. B 37, 9504–9511 (1988).CrossRefGoogle Scholar
  16. 71.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series, Phys. Rev. Lett. 45, 712–716 (1980).CrossRefGoogle Scholar
  17. 72.
    Robert Shaw, Strange attractors, chaotic behavior, and information flow, Z. Naturforsch. 36a, 80–112 (1981).Google Scholar
  18. 73.
    Alan Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica 16D, 285–317 (1985).Google Scholar
  19. 74.
    Benoit B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York (1983).Google Scholar
  20. 75.
    B. B. Mandelbrot and R. F. Voss, Why is nature fractal and when should noises be scaling, in: Noise in Physical Systems and 1/f Noise (M. Savelli, G. Lecoy, and J-P. Nougier, eds.) pp. 31–39, Elsevier Science Publishers, Amsterdam (1983).Google Scholar
  21. 76.
    B. B. Mandelbrot, Self-affine fractals and fractal dimension, Phys. Ser. 32, 257–260 (1985).CrossRefGoogle Scholar
  22. 77.
    K. Ravi-Chandar and W. G. Knauss, An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching, Int. J. Fract. 26, 141–154 (1984).CrossRefGoogle Scholar
  23. 78.
    J. P. Dempsey and P. Burgers, Dynamic crack branching in brittle solids, Int. J. Fract. 27, 203–213 (1985).CrossRefGoogle Scholar
  24. 79.
    Paul Meakin, The growth of fractal aggregates and their fractal measures, in: Phase Transitions and Critical Phenomena, Vol. 12 (C. Domb and J. L. Lebowitz, eds.), pp. 335–489, Academic Press, London (1988).Google Scholar
  25. 80.
    D. E. Passoja, Fundamental relationships between energy and geometry in fracture, in: Fractography of Glasses and Ceramics (J. R. Varner and V. D. Frechette, eds.), pp. 101–126, American Ceramic Society, Westerville, OH, USA (1988).Google Scholar
  26. 81.
    J. T. Dickinson and L. C. Jensen, Neutral emission from the fracture of epoxy, J. Appl. Phys. (to be submitted).Google Scholar
  27. 82.
    C. Atkinson, J. Avila, F. Betz, and R. E. Smelser, The rod pull-out problem. Theory and experiment, J. Mech. Phys. Solids 30, 97 (1982).CrossRefGoogle Scholar
  28. 83.
    J. Walker, How to capture on film the faint glow emitted when sticky tape is peeled off a surface, Sci. Am. 257(6) (December, 1987).Google Scholar
  29. 84.
    B. V. Deryagin, L. A. Tyurikova, N. A. Krotova, and Y. P. Toporov, Electromagnetic radiation of a gas discharge arising when separating two dielectrics, IEEE Trans. Ind. Appl. VI IA-14, 541 (1978).CrossRefGoogle Scholar
  30. 85.
    K. Ohara and T. Hata, Light emission due to peeling of polymer films from various substrates, J. Appl. Polym. Sci. 14, 2097 (1970).CrossRefGoogle Scholar
  31. 86.
    V. A. Kluyev, E. S. Revina, V. I. Anisimova, Yu. A. Khrustalev, and Y P. Toporov, Light emission in breaking of adhesive bonds under high vacuum, Colloid J. (Kolloidn Zh.) 41, 287 (1979).Google Scholar
  32. 87.
    D. Satas, Handbook of Pressure-Sensitive Adhesive Technology, Chapter 4 (D. Satas, ed.), Van Nostrand Reinhold Co., New York (1982).Google Scholar
  33. 88.
    R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra, pp. 137–142, Wiley, New York (1941).Google Scholar
  34. 89.
    R. Chen and Y Kirsch, Analysis of Thermally Stimulated Processes, p. 18, Pergamon Press, Oxford (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Thomas Dickinson
    • 1
  1. 1.Department of PhysicsWashington State UniversityPullmanUSA

Personalised recommendations