Fertilization in the Mouse

II. Spermatozoa
  • Bayard T. Storey
  • Gregory S. Kopf

Abstract

To the murine spermatozoon, its conspecific egg in vivo must seem as remote and screened by obstacles as was the Holy Grail to the Knights of Chivalry. In order that the egg be fertilized, the sperm must overcome obstacles found in the female reproductive tract and surrounding the egg itself as well as prepare itself for the membrane fusion events that lead to its entry into the egg’s cytoplasm. In the laboratory, the technique of in vitro fertilization removes most of the naturally occurring impediments posed by the female reproductive tract and provides almost unobstructed access for the sperm to the egg and an unobstructed view for the investigator. The process by which the sperm and egg interact from time of initial contact to formation of male and female pronuclei may, as a result, be studied in detail. In the mouse, successful in vitro fertilization of isolated eggs was accomplished over 20 years ago (Whittingham, 1968). In the intervening period, clarification of the sequence of the reactions involved in mouse sperm—egg interaction leading to fertilization has begun, and the number and complexity of those reactions are now more fully appreciated. However, too much emphasis on in vitro experiments may serve to obscure the biology of fertilization. Section 2 of this chapter is, therefore, concerned with the natural route taken by the sperm to reach the egg and the ensuing events as fertilization occurs in vivo. Section 3 then describes in vitro studies aimed at understanding the reactions involved in direct sperm—egg interaction that culminates in fertilization of the egg. It is hoped that information gained from both in vivo and in vitro studies will permit the construction of a unifying description of the process of fertilization in the mammal.

Keywords

Zona Pellucida Acrosome Reaction Mouse Sperm Sperm Plasma Membrane Sperm Penetration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons, D., Speake, J. L.,and Poirier, G. R., 1984, Evidence for a proteinase inhibitor binding component associated with murine spermatozoa, Biol. Reprod. 31: 811–817.Google Scholar
  2. Andrews, J. C., and Bavister, B. D., 1989a, Capacitation of hamster spermatozoa with the divalent cation chelators, D-penicillamine, L-histidine, and L-cysteine in a protein-free culture medium, Gamete Res. 23: 159–170.PubMedCrossRefGoogle Scholar
  3. Andrews, J. C., and Bavister, B. D., 1989b, Hamster zonae pellucidae cannot induce physiological acrosome reactions in chemically capacitated hamster spermatozoa in the absence of albumin, Biol. Reprod. 40: 117–122.CrossRefGoogle Scholar
  4. Aounuma, S., Okabe, M., Kawaguchi, M., and Kishi, Y., 1980, Studies on sperm capacitation. IX. Movement characteristics of spermatozoa in relation to capacitation, Chem Pharm. Bull. 28: 1497–1502.CrossRefGoogle Scholar
  5. Apter, E M., Baltz, J. M., and Millette, C. E, 1988, A possible role for cell surface fucosyltransferase (FT) activity during sperm—zona pellucida binding in the mouse, J. Cell. Biol. 107: 175a.Google Scholar
  6. Austin, C. R., 1951, Observations on the penetration of the sperm into the mammalian egg, Aust. J. Sci. Res. B. 4: 581–596.PubMedGoogle Scholar
  7. Austin, C. R., 1952, The capacitation of mammalian sperm, Nature 170: 326.PubMedCrossRefGoogle Scholar
  8. Austin, C. R., 1960, Capacitation and the release of hyaluronidase from spermatozoa, J. Reprod. Fertil. 1: 310–311.CrossRefGoogle Scholar
  9. Austin, C. R., 1975, Membrane fusion events in fertilization. J. Reprod. Fertil. 44: 155–166.PubMedCrossRefGoogle Scholar
  10. Austin, C. R., 1985, Sperm maturation in the male and female genital tracts, in: Biology of Fertilization, Vol. 2 ( C. B. Metz and A. Monroy eds.), Academic Press, New York, pp. 121–155.CrossRefGoogle Scholar
  11. Baltz, J. M.,and Cardullo, R. A., 1989, On the number and rate of formation of sperm—zona bonds in the mouse, Gamete Res. 24: 1–8.Google Scholar
  12. Bedford, J. M., 1968, Ultrastructural changes in the sperm head during fertilization in the rabbit, Am. J. Anat. 123: 329–358.PubMedCrossRefGoogle Scholar
  13. Bedford, J. M., 1970, Sperm capacitation and fertilization in mammals, Biol. Reprod. [Suppl.] 2: 128–158.CrossRefGoogle Scholar
  14. Bedford, J. M., and Cooper, G. W, 1978, Membrane fusion events in the fertilization of vertebrate eggs, in: Cell Surface Reviews, Vol. 5 ( G. Poste and G. L. Nicholson eds.), Elsevier North Holland, Amsterdam, pp. 65–125.Google Scholar
  15. Benau, D. A., and Storey, B. T., 1987, Characterization of the mouse sperm plasma membrane zona-binding site sensitive to trypsin inhibitors, Biol. Reprod. 36: 282–292.PubMedCrossRefGoogle Scholar
  16. Benau, D. A., and Storey, B. T., 1988, Relationship between two types of mouse sperm surface sites that mediate binding of sperm to the zona pellucida, Biol. Reprod. 39: 235–244.PubMedCrossRefGoogle Scholar
  17. Benau, D. A., McGuire, E. J., and Storey, B. T., 1990, Further characterization of the mouse sperm surface zona-binding site with galactosyltransferase activity, Mol. Reprod. Dev. 25: 393–399.PubMedCrossRefGoogle Scholar
  18. Bentley, J. K., Garbers, D. L., Domino, S. E., Noland, T D., and VanDop, C., 1986, Spermatozoa contain a guanine nucleotide binding protein ADP-ribosylated by pertussis toxin, Biochem. Biophys. Res. Commun. 138: 728–734.PubMedCrossRefGoogle Scholar
  19. Berridge, M. J., 1986, Cell signalling through phospholipid metabolism, J. Cell Sci. [Suppl.] 4: 137–153.Google Scholar
  20. Birdsall, N. J. M., and Hulme, E. C., 1976, Biochemical studies on muscarinic acetylcholine receptors, J. Neurochem. 27: 7–16.PubMedCrossRefGoogle Scholar
  21. Bleil, J. D., and Wassarman, P. M., 1980a, Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida, Dev. Biol. 76: 185–202.PubMedCrossRefGoogle Scholar
  22. Bleil, J. D., and Wassarman, P. M., 1980b, Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro, Proc. Natl. Acad. Sci. U.S.A. 77: 1029–1033.PubMedCrossRefGoogle Scholar
  23. Bleil, J. D., and Wassarman, P M., 1980c, Mammalian sperm—egg interaction: Identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm, Cell 20: 873–882.PubMedCrossRefGoogle Scholar
  24. Bleil, J. D., and Wassarman, P. M., 1983, Sperm—egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein, Dev. Biol. 95: 317–324.PubMedCrossRefGoogle Scholar
  25. Bleil, J. D., and Wassarman, P. M., 1986, Autoradiographic visualization of the mouse egg’s sperm receptor bound to sperm, J. Cell Biol. 102: 1363–1371.PubMedCrossRefGoogle Scholar
  26. Bleil, J. D., and Wassarman, P. M., 1988, Galactose at the non-reducing terminus of 0-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein’s sperm receptor activity. Proc. Natl. Acad. Sci. U.S.A. 85: 6778–6782.PubMedCrossRefGoogle Scholar
  27. Bleil, J. D., and Wassarman, P. M., 1989, Identification of a mouse sperm protein that recognizes ZP3, J. Cell Biol. 109: 125a.Google Scholar
  28. Bleil, J. D., Greve, J. M., and Wassarman, P. M., 1988, Identification of a secondary sperm receptor in the mouse egg zona pellucida: Role in maintenance of binding of acrosome-reacted sperm to eggs, Dev. Biol. 128: 376–385.PubMedCrossRefGoogle Scholar
  29. Boldt, J., and Wolf, D. P, 1986, An improved method for isolation of fertile zona-free mouse eggs, Gamete Res. 13: 213–222.CrossRefGoogle Scholar
  30. Boldt, J., and Wolf, D. P., 1987, Isolation of 125I-concanavalin A-labeled plasma membrane from unfertilized mouse eggs, Gamete Res. 16: 303–310.PubMedCrossRefGoogle Scholar
  31. Boldt, J., Howe, A. M., and Preble, J., 1988, Enzymatic alteration of the ability of mouse egg plasma membrane to interact with sperm, Biol. Reprod. 39: 19–27.PubMedCrossRefGoogle Scholar
  32. Boldt, J., Gunter, L. E., and Howe, A. M., 1989a, Characterization of cell surface polypeptides of unfertilized, fertilized, and protease-treated zona-free mouse eggs, Gamete Res. 23: 91–101.PubMedCrossRefGoogle Scholar
  33. Boldt, J., Howe, A. M., Parkerson, J. B., Gunter, L. E., and Kuehn, E., 1989b, Carbohydrate involvement in sperm—egg fusion in mice, Biol. Reprod. 40: 887–896.PubMedCrossRefGoogle Scholar
  34. Boldt, J., Casas, A., Whaley, E., and Lewis, J. B., 1989c, Sperm—egg fusion in mice is potassium dependent, J. Cell Biol. 109: 125a.Google Scholar
  35. Brackett, B. G., and Oliphant, G., 1975, Capacitation of rabbit spermatozoa in vitro, Biol. Reprod. 12: 260–274.PubMedCrossRefGoogle Scholar
  36. Brinster, R. L., and Biggers, J. D., 1965, In vitro fertilization of mouse ova within the explanted fallopian tube. J. Reprod. Fertil. 10: 277–279.Google Scholar
  37. Brown, C. R., 1983, Purification of mouse sperm acrosin, its activation from proacrosin and effect on homologous egg investments, J. Reprod. Fertil. 69: 289–295.PubMedCrossRefGoogle Scholar
  38. Brown, C. R., 1986, The morphological and molecular susceptibility of sheep and mouse zona pellucida to acrosin, J. Reprod. Fertil. 77: 411–417.PubMedCrossRefGoogle Scholar
  39. Brown, C. R., and Cheng, W. T. K., 1985, Limited proteolysis of the porcine zona pellucida by homologous sperm acrosin, J. Reprod. Fertil. 74: 257–260.PubMedCrossRefGoogle Scholar
  40. Bryan, J. H. D., 1974, Capacitation in the mouse: The response of murine acrosomes to the environment of the female reproductive tract, Biol. Reprod. 10: 414–421.PubMedCrossRefGoogle Scholar
  41. Bunch, D. O., and Saling, P. M., 1988, The recognition sequence, RGDS, disrupts mouse sperm—zona pellucida interaction. J. Cell Biol. 107: 175a.Google Scholar
  42. Bunch, D. O., Le Guen, P, and Saling, P. M., 1990, P95, a ZP3 receptor with tyrosine kinase activity, fractionates with mouse sperm membranes that inhibit sperm-zona binding, J. Androl. 11:24-P.Google Scholar
  43. Casey, P. J., and Gilman, A. G., 1988, G protein involvement in receptor—effector coupling, J. Biol. Chem. 263: 2577–2580.PubMedGoogle Scholar
  44. Casillas, E. R., Elder, C. M., and Hoskins, D. D., 1980, Adenylate cyclase activity of bovine spermatozoa during maturation in the epididymis and the activation of sperm particulate adenylate cyclase by GTP and polyamines, J. Reprod. Fertil. 59: 297–302.PubMedCrossRefGoogle Scholar
  45. Caswell, A. H., and Hutchinson, J. D., 1971, Selectivity of cation chelation to tetracyclines: Evidence for special conformation of calcium chelate, Biochem. Biophys. Res. Commun. 43: 525–530.CrossRefGoogle Scholar
  46. Chang, M. C., 1951, Fertilizing capacity of spermatozoa deposited in the fallopian tubes, Nature 168: 697–698.PubMedCrossRefGoogle Scholar
  47. Chang, M. C., 1957, A detrimental effect of seminal plasma on the fertilizing capacity of sperm, Nature 184: 466–467.CrossRefGoogle Scholar
  48. Chang, M. C., 1959, Fertilization of rabbit ova in vitro, Nature 184: 466–467.PubMedCrossRefGoogle Scholar
  49. Chang, M. C., 1984, The meaning of sperm capacitation. A historical perspective, J Androl. 5: 45–50.PubMedGoogle Scholar
  50. Chang, M. C., and Hunt, D. M., 1956, Effects of proteolytic enzymes on the zona pellucida of fertilized and unfertilized mammalian eggs, Exp. Cell Res. 11: 497–499.PubMedCrossRefGoogle Scholar
  51. Chang, M. C., and Hunter, R. F. H., 1975, Capacitation of mammalian sperm: Biological and experimental aspects, in: Handbook of Physiology, Section 7: Endocrinology. Vol. V, Male Reproductive System ( R. O. Greep and E. B. Astwood senior eds., D. W. Hamilton and R. O. Greep volume eds.), American Physiological Society, Washington, DC, pp. 339–351.Google Scholar
  52. Chase, T., Jr., and Shaw, E., 1970, Titration of trypsin, plasmin, and thrombin with p-nitrophenyl p’-guanidinobenzoate HC1, Methods Enzymol. 19: 20–27.CrossRefGoogle Scholar
  53. Cheng, C. Y., and Boettcher, B., 1979, Effects of cholera toxin and 5’-guanylylimidodiphosphate on human spermatozoal adenylate cyclase activity, Biochem. Biophys. Res. Commun. 91: 1–9.PubMedCrossRefGoogle Scholar
  54. Cooper, T. G., 1984, The onset and maintenance of hyperactivated motility of spermatozoa from the mouse, Gamete Res. 9: 55–74.CrossRefGoogle Scholar
  55. Cornwall, G. A., lhlsiani, D. R. P, and Orgebin-Crist, M.-C., 1991, Inhibition of the mouse sperm surface a-Dmannosidase inhibits sperm-egg binding in vitro, Biol. Reprod. 44: 913–921.PubMedCrossRefGoogle Scholar
  56. Cummins, J. M., and Woodall, P. F., 1985, On mammalian sperm dimensions, J. Reprod. Fertil. 75: 153–175.PubMedCrossRefGoogle Scholar
  57. Davis, B. K., 1980, Interaction of lipids with the plasma membrane of sperm cells. I. The antifertilization action of cholesterol, Arch. Androl. 5: 249–254.PubMedCrossRefGoogle Scholar
  58. Davis, B. K., 1981, Timing of fertilization in mammals: Sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval, Proc. Natl. Acad. Sci. U.S.A. 78: 7560–7564.PubMedCrossRefGoogle Scholar
  59. Davis, B. K., Byrne, R., and Bedigan, K., 1980, Studies on the mechanism of capacitation: Albumin-mediated changes in plasma membrane lipids during in vitro incubation of rat sperm cells, Proc. Natl. Acad. Sci. U.S.A. 77: 1546–1550.PubMedCrossRefGoogle Scholar
  60. Dunbar, B. S., Dudkiewicz, A. B., and Bundman, D. S., 1985, Proteolysis of specific porcine zona pellucida glycoproteins by boar acrosin, Biol. Reprod. 332: 619–630.CrossRefGoogle Scholar
  61. Endo, Y., Schultz, R. M., and Kopf, G. S., 1987a, Effects of phorbol esters and a diacylglycerol on mouse eggs: Inhibition of fertilization and modification of the zona pellucida, Dev. Biol. 119: 199–209.PubMedCrossRefGoogle Scholar
  62. Endo, Y., Lee, M.A., and Kopf, G. S., 1987b, Evidence for the role of a guanine nucleotide-binding regulatory protein in the zona pellucida-induced mouse sperm acrosome reaction, Dev. Biol. 119: 210–216.PubMedCrossRefGoogle Scholar
  63. Endo, Y., Mattel, P, Kopf, G. S., and Schultz, R. M., 1987c, Effects of a phorbol ester on mouse eggs: Dissociation of sperm receptor activity from acrosome reaction-inducing activity of the mouse zona pellucida protein, ZP3, Dev. Biol. 123: 574–577.PubMedCrossRefGoogle Scholar
  64. Endo, Y., Lee, M. A., and Kopf, G. S., 1988, Characterization of an islet activating protein-sensitive site in mouse sperm that is involved in the zona pellucida-induced acrosome reaction, Dev. Biol. 129: 12–24.PubMedCrossRefGoogle Scholar
  65. Norman, H. M., and Babcock, D. E, 1990, Progress towards understanding the molecular basis of capacitation, in: The Biology and Chemistry of Mammalian Fertilization ( P M. Wassarman, ed.), CRC Press, Boca Raton, FL, pp. 105–132.Google Scholar
  66. Florman, H. M., and Storey, B. T., 1981, Inhibition of in vitro fertilization of mouse eggs: 3-Quinuclidinyl benzilate specifically blocks penetration of zonae pellucidae by mouse spermatozoa, J. Exp. Zool. 216: 159–167.PubMedCrossRefGoogle Scholar
  67. Norman, H. M., and Storey, B. T., 1982a, Mouse gamete interactions: The zona pellucida is the site of the acrosome reaction leading to fertilization in vitro, Dev. Biol. 91: 121–130.CrossRefGoogle Scholar
  68. Norman, H. M., and Storey, B. T., 1982b, Characterization of cholinomimetic agents that inhibit in vitro fertilization in the mouse, J. Androl. 3: 157–164.Google Scholar
  69. Norman, H. M., and Wassarman, P M., 1985, 0-Linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity, Cell 41: 313–324.Google Scholar
  70. Norman, H. M., Saling, P. M., and Storey, B. T., 1982, Fertilization of mouse eggs in vitro. Time resolution of the reactions preceding penetration of the zona pellucida, J. Androl. 3: 373–381.Google Scholar
  71. Florman, H. M., Bechtol, K. B., and Wassarman, P. M., 1984, Enzymatic digestion of the functions of the mouse egg’s receptor for sperm, Dev. Biol. 106: 243–255.PubMedCrossRefGoogle Scholar
  72. Florman, H. M., Tombes, R. M., First, N. L., and Babcock, D. E, 1989, An adhesion-associated agonist from the zona pellucida activates G protein-promoted elevations of internal Ca2+ and pH that mediate mammalian sperm acrosomal exocytosis, Dev. Biol. 135: 133–146.PubMedCrossRefGoogle Scholar
  73. Fraser, L. R., 1977, Motility patterns in mouse spermatozoa before and after capacitation, J. Exp. Zool. 202: 439–444.PubMedCrossRefGoogle Scholar
  74. Fraser, L. R., 1982, Ca2+ is required for mouse sperm capacitation and fertilization in vitro, J. Androl. 3: 412–419.Google Scholar
  75. Fraser, L. R., 1984a, Mouse sperm capacitation involves loss of a surface associated component, J. Reprod. Fertil. 72: 373–384.PubMedCrossRefGoogle Scholar
  76. Fraser, L. R., 1984b, Mechanisms controlling mammalian fertilization, Oxford Rev. Reprod. Biol. 6: 174–225.Google Scholar
  77. Fraser, L. R., 1985, Albumin is required to support the acrosome reaction but not capacitation in mouse spermatozoa in vitro, J. Reprod. Fertil. 74: 185–196.PubMedCrossRefGoogle Scholar
  78. Fraser, L. R., 1987a, Minimum and maximum extracellular Ca2+ requirements during mouse sperm capacitation and fertilization in vitro, J. Reprod. Fertil. 81: 77–89.PubMedCrossRefGoogle Scholar
  79. Fraser, L. R., 1987b, Strontium supports capacitation and the acrosome reaction in mouse sperm and rapidly activates mouse eggs, Gamete Res. 18: 363–374.PubMedCrossRefGoogle Scholar
  80. Freissmuth, M., Casey, P J., and Gilman, A. G., 1989, G proteins control diverse pathways of transmembrane signaling, FASEB J. 3: 2125–2131.PubMedGoogle Scholar
  81. Garbers, D. L., 1989, Molecular basis of fertilization, Annu. Rev. Biochem. 58: 719–742.PubMedCrossRefGoogle Scholar
  82. Garbers, D. L., and Kopf, G. S., 1980, The regulation of spermatozoa by calcium and cyclic nucleotides, Adv. Cyclic Nucleotide Res. 13: 251–306.PubMedGoogle Scholar
  83. Glassner, M., Abisogun, A. O., Kligman, I., Woolkalis, M. J., Gerton, G. L., and Kopf, G. S., 1989, Immunocytochemical and biochemical analysis of guanine nucleotide-binding regulatory proteins (G proteins) in mammalian spermatozoa, J. Cell Biol. 109: 250a.Google Scholar
  84. Go, K. J., and Wolf, D. P., 1983, The role of sterols in sperm capacitation, Adv. Lipid Res. 30: 317–330.Google Scholar
  85. Go, K. J.,and Wolf, D. P, 1985, Albumin-mediated changes in sperm sterol content during capacitation, Biol. Reprod. 32: 145–153.PubMedCrossRefGoogle Scholar
  86. Godfrey, E. W, Dietz, M. E., Morstad, A. L., Wallskog, P A., and Yorde, D. E., 1988, Acetylcholine receptor-aggregating proteins are associated with the extracellular matrix of many tissues in Torpedo, J. Cell Biol. 106: 1263–1272.PubMedCrossRefGoogle Scholar
  87. Gomperts, B. D., and Tatham, P. E. R., 1988, GTP-binding proteins in the control of exocytosis, Cold Spring Harbor Symp. Quant. Biol. 53: 983–992.PubMedCrossRefGoogle Scholar
  88. Greve, J. M., and Wassarman, P. M., 1985, Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat, J Mol. Biol. 181: 253–264.PubMedCrossRefGoogle Scholar
  89. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Cat+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260: 3440–3450.PubMedGoogle Scholar
  90. Gwatkin, R. B. L., 1977, Fertilization Mechanisms in Man and Mammals, Plenum Press, New York.CrossRefGoogle Scholar
  91. Hartmann, J. R., 1983, Mammalian fertilization: Gamete surface interaction in vitro, in: Mechanisms and Control of Animal Fertilization ( J. F. Hartmann, ed.), Academic Press, New York, pp. 325–364.Google Scholar
  92. Hartmann, J. F., and Hutchison, C. F, 1974a, Nature of the pre-penetration contact interactions between hamster gametes in vitro, J. Reprod. Fertil. 36: 49–57.PubMedCrossRefGoogle Scholar
  93. Hartmann, J. F., and Hutchison, C. F., 19746, Mammalian fertilization in vitro: Sperm induced preparation of the zona pellucida of hamster ova for final binding, J. Reprod. Fertil. 37: 44–46.Google Scholar
  94. Hartmann, J. F, and Hutchison, C. E, 1974c, Contact between hamster spermatozoa and the zona pellucida releases a factor which influences early binding stages, J. Reprod. Fertil. 37: 61–66.PubMedCrossRefGoogle Scholar
  95. Hartmann, J. F, and Hutchison, C. F., 1980, Nature and fate of the factors released during early contact interactions between hamster sperm and egg prior to fertilization in vitro, Dev. Biol. 78: 380–393.PubMedCrossRefGoogle Scholar
  96. Hedrick, J. L., Urch, U. A., and Hardy, D. M., 1989, Structure—function properties of the sperm enzyme acrosin, in: Biocatalysis in Agricultural Biotechnology ( J. R. Whitaker and P. E. Sonnet, eds.), American Chemical Society, Washington, DC, pp. 215–229.CrossRefGoogle Scholar
  97. Heffner, L. J., and Storey, B. T., 1982, Cold lability of sperm binding to zona pellucida, J. Exp. Zool. 219: 155–161.PubMedCrossRefGoogle Scholar
  98. Heffner, L. J., Saling, P. M., and Storey, B. T., 1980, Separation of calcium effects on motility and zona binding ability in mouse spermatozoa, J. Exp. Zool. 212: 53–59.PubMedCrossRefGoogle Scholar
  99. Hildebrandt, J. D., Codina, J., Tash, J. S., Kirchick, H. J., Lipschultz, L., Sekura, R. D., and Birnbaumer, L., 1985, The membrane-bound spermatozoal adenylyl cyclase system does not share coupling characteristics with somatic cell adenylyl cyclases, Endocrinology 116: 1357–1366.PubMedCrossRefGoogle Scholar
  100. Huang, T. T. F, Fleming, A. D., and Yanagimachi, R., 1981, Only acrosome-reacted spermatozoa can bind to and penetrate zona pellucida: a study using the guinea pig, J. Exp. Zool. 217: 287–290.PubMedCrossRefGoogle Scholar
  101. Hyne, R. V, and Lopata, A., 1982, Calcium and adenosine affect human sperm adenylate cyclase activity, Gamete Res. 6: 81–89.CrossRefGoogle Scholar
  102. Inoue, M., and Wolf, D. P, 1974a, Solubility properties of the murine zona pellucida, Biol. Reprod. 10: 512–518.PubMedCrossRefGoogle Scholar
  103. Inoue, M., and Wolf, D. P., 1974b, Comparative solubility properties of the zonae pellucidae of unfertilized and fertilized mouse ova, Biol. Reprod. 11: 558–565.PubMedCrossRefGoogle Scholar
  104. Inoue, M., and Wolf, D. P, 1975a, Comparative solubility properties of rat and hamster zonae pellucidae, Biol. Reprod. 12: 535–540.CrossRefGoogle Scholar
  105. Inoue, M., and Wolf, D. P, 19756, Sperm binding characteristics of the murine zona pellucida, Biol. Reprod. 13: 340–348.Google Scholar
  106. Iwamatsu, T., and Chang, M. C.,1969, In vitro fertilization of mouse eggs in the presence of bovine follicular fluid, Nature 224:919–920.Google Scholar
  107. Iwamatsu, H., and Chang, M. C., 1970, Further investigation of capacitation of sperm and fertilization of mouse eggs in vitro, J. Exp. Zool. 175: 271–282.PubMedCrossRefGoogle Scholar
  108. Iwamatsu, H., and Chang, M. C., 1971, Factors involved in the fertilization of mouse eggs in vitro, J. Reprod. Fertil. 26: 197–208.PubMedCrossRefGoogle Scholar
  109. Jaffe, L. A., 1976, Fast block to polyspermy in sea urchin eggs is electrically mediated, Nature 261: 68–71.PubMedCrossRefGoogle Scholar
  110. Jaffe, L. A., Sharp, A. P., and Wolf, D. P, 1983, Absence of an electrical polyspermy block in the mouse, Dev. Biol. 96: 317–323.PubMedCrossRefGoogle Scholar
  111. Jameson, G. W, Roberts, D. V, Adams, R. W, Kyle, W. S. A., and Elmore, D. T., 1973, Determination of the operational molariy of solutions. of bovine alpha-chymoptrypsin, trypsin, thrombin, and factor Xa by spectrofluorimetric titration, Biochem. J. 131: 107–117.PubMedGoogle Scholar
  112. Johnson, R. G., Carty, S. E., Fingerhood, B. J., and Scarpa, A., 1980, The internal pH of mast cell granules, FEBS Lett. 120: 75–79.PubMedCrossRefGoogle Scholar
  113. Jones, J., Kopf, G. S., and Schultz, R. M., 1989, Variability in electrophoretic mobility of G;-like proteins; effect of SDS, FEBS. Lett. 243: 409–412.PubMedCrossRefGoogle Scholar
  114. Jones, R., Brown, C. R., and Lancaster, R. T., 1988, Carbohydrate-binding properties of boar sperm proacrosin and assessment of its role in sperm—egg recognition and adhesion during fertilization, Development 102: 781–792.Google Scholar
  115. Katz, D. F., and Dott, H. M., 1975, Methods of measuring swimming speed of spermatozoa, J. Reprod. Fertil. 45: 263–272.PubMedCrossRefGoogle Scholar
  116. Katz, D. F., Drobnis, E. Z., and Overstreet, J. W., 1989, Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments, Gamete Res. 22: 443–469.PubMedCrossRefGoogle Scholar
  117. Kinloch, R. A., Roller, R. J., Fimiani, C. M., Wassarman, D. A., and Wassarman, P. M., 1988, Primary structure of the mouse sperm receptor polypeptide determined by gene cloning, Proc. Natl. Acad. Sci. U.S.A. 85: 6409–6413.PubMedCrossRefGoogle Scholar
  118. Kligman, I., Glassner, M., Storey, B. T., and Kopf, G. S., 1988, Zona pellucida-mediated acrosomal exocytosis in mouse spermatozoa: Characterization of an intermediate stage prior to the completion of the acrosome reaction, Dev. Biol. 145: 344–355.CrossRefGoogle Scholar
  119. Kopf, G. S., 1988, Regulation of sperm function by guanine nucleotide-binding regulatory proteins (G-proteins), in: Meiotic Inhibition: Molecular Control of Meiosis ( F. Haseltine and N. First, eds.), Alan R. Liss, New York, pp. 357–386.Google Scholar
  120. Kopf, G. S., 1989, Mechanisms of signal transduction in mouse spermatozoa, Ann. N. Y. Acad. Sci. 564: 289–302.PubMedCrossRefGoogle Scholar
  121. Kopf, G. S., and Gerton, G. L., 1990, The mammalian sperm acrosome and the acrosome reaction, in: The Biology and Chemistry of Mammalian Fertilization ( P. M. Wassarman, ed.), CRC Press, Boca Ratan, FL, pp. 153–203.Google Scholar
  122. Kopf, G. S., Woolkalis, M. J., and Gerton, G. L., 1986, Evidence for a guanine nucleotide-binding regulatory protein in invertebrate and mammalian sperm: Identification by islet-activating protein-catalyzed ADP-ribosylation and immunochemical methods, J. Biol. Chem. 261: 7327–7331.PubMedGoogle Scholar
  123. Kopf, G. S., Endo, Y., Mattei, P, Kurasawa, S., and Schultz, R. M., 1989, Egg-induced modifications of the murine zona pellucida, in: Mechanisms of Egg Activation ( R. L. Nuccitelli, W. H. Clark, and G. N. Cherr, eds.), Plenum Press, New York, pp. 249–272.Google Scholar
  124. Kraayenhof, R., Brocklehurst, J. R., and Lee, C. P., 1976, Fluorescent probes for the energized state in biological membranes, in: Concepts in Biochemical Fluorescence ( R. F Chen and E. Edelhoch eds.), Marcel Dekker, New York, pp. 767–807.Google Scholar
  125. Kuzan, F., Fleming, A. D., and Seidel, G., 1984, Successful fertilization in vitro of fresh intact oocytes by perivitelline (acrosome-reacted) spermatozoa in the rabit, Fertil. Steril. 41: 766–770.PubMedGoogle Scholar
  126. Lambert, H., and Le, A. V., 1984, Possible involvement of a sialylated component of the mouse sperm plasma membrane in sperm—zona interaction in the mouse, Gamete Res. 10: 153–163.CrossRefGoogle Scholar
  127. Langlais, J., and Roberts, K. D., 1985, A molecular membrane model of sperm capacitation and the acrosome reaction of mammalian spermatozoa, Gamete Res. 12: 183–224.CrossRefGoogle Scholar
  128. Langlais, J., Zollinger, M., Plante, L., Chapdelaine, A., Bleau, G., and Roberts, K. D., 1981, Localization of cholesteryl sulfate in human spermatozoa in support of a hypothesis for the mechanism of capacitation, Proc. Natl. Acad. Sci. U.S.A. 78: 7266–7270.PubMedCrossRefGoogle Scholar
  129. Langlais, J., Kan, F. W. K., Granger, L., Raymond, L., Bleau, G., and Roberts, K. D., 1988, Identification of sterol acceptors that stimulate cholesterol efflux from human soermatozoa during in vitro capacitation, Gamete Res. 20: 185–201.PubMedCrossRefGoogle Scholar
  130. Lee, M. A., and Storey, B. T., 1985, Evidence for plasma membrane impermeability to small ions in acrosome-intact mouse spermatozoa bound to mouse zonae pellucidae, using an aminoacridine fluorescent probe: Time course of the zona-induced acrosome reaction monitored by both chlortetracycline and pH probe fluorescence, Biol. Reprod. 33: 235–246.PubMedCrossRefGoogle Scholar
  131. Lee, M. A., and Storey, B. T., 1986, Bicarbonate is essential for fertilization of mouse eggs. Mouse sperm require it to undergo the acrosome reaction, Biol. Reprod. 34: 349–356.PubMedCrossRefGoogle Scholar
  132. Lee, M. A., and Storey, B. T., 1989, Endpoint of first stage of zona pellucida-induced acrosome reaction in mouse spermatozoa characterized by acrosomal H+ and Ca2+ permeability: Population and single cell kinetics, Gamete Res. 24: 303–326.PubMedCrossRefGoogle Scholar
  133. Lee, M. A., Kopf, G. S., and Storey, B. T., 1987, Effects of phorbol esters and a diacylglycerol on the mouse sperm acrosome reaction induced by the zona pellucida, Biol. Reprod. 36: 617–627.PubMedCrossRefGoogle Scholar
  134. Leyton, L., and Saling, P., 1989a, 95 kD sperm proteins bind ZP3 and serve as tyrosine kinase substrates in response to zona binding, Cell 57: 123–130.Google Scholar
  135. Leyton, L., and Saling, P, 1989b, Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction, J. Cell Biol. 108: 2163–2168.PubMedCrossRefGoogle Scholar
  136. Leyton, L., Robinson, A., and Saling, P. M., 1989, Relationship between the M42 antigen of mouse sperm and the acrosome reaction induced by ZP3, Dev. Biol. 132: 174–178.PubMedCrossRefGoogle Scholar
  137. Lopez, L. C., Bayna, E. M., Litoff, D., Shaper, N. L., Shaper, J. H., and Shur, B. D., 1985, Receptor function of mouse sperm surface galactosyltransferase during fertilization, J. Cell Biol. 101: 1501–1510.PubMedCrossRefGoogle Scholar
  138. McLaughlin, J. D., and Shur, B. D., 1987, Binding of caput epididymal mouse sperm to the zona pellucida, Dev. Biol. 124: 557–561.PubMedCrossRefGoogle Scholar
  139. McRorie, R. A., and Williams, W. L., 1974, Biochemistry of fertilization, Annu. Rev. Biochem. 43: 777–803.PubMedCrossRefGoogle Scholar
  140. Meizel, S., and Deamer, D. W, 1978, The pH of the hamster acrosome, J. Histochem. Cytochem. 26: 98–105.PubMedCrossRefGoogle Scholar
  141. Minke, B., and Stephenson, R. S., 1985, The characteristics of chemically induced noise in Musca photoreceptors, J. Comp. Physiol. A 156: 339–356.Google Scholar
  142. Miyamoto, H., and Chang, M. C., 1973, The importance of serum albumin and metabolic intermediates for capacitation of spermatozoa and fertilization of mouse eggs in vitro, J. Reprod. Fertil. 32: 193–205.PubMedCrossRefGoogle Scholar
  143. Miyamoto, H., and Ishibashi, T., 1975, The role of calcium ions in fertilization of mouse and rat eggs in vitro, J. Reprod. Fertil. 45: 523–526.PubMedCrossRefGoogle Scholar
  144. Moller, C. C., and Wassarman, P. M., 1989, Characterization of a proteinase that cleaves zona pellucida glycoprotein ZP2 following activation of mouse eggs, Dev. Biol. 132: 103–112.PubMedCrossRefGoogle Scholar
  145. Moore, H. D. M., and Bedford, J. M., 1983, The interaction of mammalian gametes in the female, in: Mechanism and Control of Animal Fertilization ( J. F. Hartmann, ed.), Academic Press, New York, pp. 453–497.Google Scholar
  146. Morales, P., Cross, N. L., Overstreet, J. W, and Hanson, F. W., 1989, Acrosome-intact and acrosome-reacted human sperm can initiate binding to the zona pellucida, Dev. Biol. 133: 385–392.PubMedCrossRefGoogle Scholar
  147. Myles, D. G., Hyatt, H., and Primakoff, P., 1987, Binding of both acrosome-intact and acrosome-reacted guinea pig sperm to the zona pellucida during in vitro fertilization, Dev. Biol. 121: 559–567.PubMedCrossRefGoogle Scholar
  148. Neer, E. J., Lok, J. M., and Wolf, L. G., 1984, Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase, J. Biol. Chem. 259: 14222–14229.PubMedGoogle Scholar
  149. Neill, J. M., and Olds-Clarke, P., 1987, A computer-assisted assay for mouse sperm hyperactivation demonstrates that bicarbonate but not bovine serum albumin is required, Gamete Res. 18: 121–140.PubMedCrossRefGoogle Scholar
  150. Neill, J. M., and Olds-Clarke, P., 1988, Incubation of mouse sperm with lactate delays capacitation and hyperactivation and lowers fertilization levels in vitro, Gamete Res. 20: 459–473.PubMedCrossRefGoogle Scholar
  151. Nicosia, S. V, Wolf, D. P., and Mastroianni, L., Jr., 1978, Surface topography of mouse eggs before and after insemination, Gamete Res. 1: 145–155.CrossRefGoogle Scholar
  152. Noland, T. D., Garbers, D. L., and Kopf, G. S., 1988, An elevation in cyclic AMP concentration precedes the zona pellucida-induced acrosome reaction of mouse spermatozoa, Biol. Reprod. 38 (Suppl.): 94.Google Scholar
  153. Olds-Clarke, P., 1983, The nonprogressive motility of sperm populations from mice with a tw32 haplotype, J. Androl. 4: 136–143.PubMedGoogle Scholar
  154. Olds-Clarke, P, 1989, Sperm from tw32/+ mice: Capacitation is normal, but hyperactivation is premature and nonhyperactivated sperm are slow, Dev. Biol. 131: 475–482.PubMedCrossRefGoogle Scholar
  155. Overstreet, J. W, 1983, Transport of gametes in the reproductive tract of the female mammal, in: Mechanism and Control of Animal Fertilization ( J. F. Hartmann, ed.), Academic Press, New York, pp. 499–543.Google Scholar
  156. Pavlok, A., 1967, Development of mouse ova in explanted oviducts: Fertilization, cultivation, and transplantation, Science 157: 1457–1458.PubMedCrossRefGoogle Scholar
  157. Pavlok, A., and McLaren, A., 1972, The role of cumulus cells and the zona pellucida in fertilization of mouse eggs in vitro, J. Reprod. Fertil. 29: 91–97.PubMedCrossRefGoogle Scholar
  158. Poirier, G. R., Robinson, R., Richardson, R., Hinds, K., and Clayton, D., 1986, Evidence for a binding site on the sperm plasma membrane which recognizes the zona pellucida: A binding site on the sperm plasma membrane, Gamete Res. 14: 235–243.CrossRefGoogle Scholar
  159. Ringuette, M. J., Chamberlin, M. E., Baur, A. W, Sbieski, D. A., and Dean, J., 1988, Molecular anlysis of cDNA coding for ZP3, a sperm binding protein of the mouse zona pellucida, Dev. Biol. 127: 287–295.PubMedCrossRefGoogle Scholar
  160. Robinson, R., Richardson, R., Hinds, K., Clayton, D., and Poirier, G. R., 1987, Features of a seminal proteinaseinhibitor-zona pellucida-binding component on murine spermatozoa, Gamete Res. 16: 217–228.PubMedCrossRefGoogle Scholar
  161. Ross, E. M., 1989, Signal sorting and amplification through G protein-coupled receptors, Neuron 3: 141–152.PubMedCrossRefGoogle Scholar
  162. Ross, E. M., and Gilman, A. G., 1980, Biochemical properties of hormone-sensitive adenylate cyclase, Annu. Rev. Biochem. 49: 533–564.PubMedCrossRefGoogle Scholar
  163. Saling, P. M., 1981, Involvement of trypsin-like activity in binding of mouse spermatozoa to zonae pellucidae, Proc. Natl. Acad. Sci. U.S.A. 78: 6231–6235.PubMedCrossRefGoogle Scholar
  164. Saling, P. M., 1982, Development of the ability to bind to zonae pellucidae during epididymal maturation: Reversible immobilization of mouse spermatozoa by lanthanum, Biol. Reprod. 26: 429–436.PubMedCrossRefGoogle Scholar
  165. Saling, P. M., 1986, Mouse sperm antigens that participate in fertilization. IV. A monoclonal antibody prevents zona penetration by inhibition of the acrosome reaction, Dev. Biol. 177: 511–519.CrossRefGoogle Scholar
  166. Saling, P. M., 1989, Mammalian sperm interaction with extracellular matrices of the egg, Oxford Rev. Reprod. Biol. 11: 339–388.Google Scholar
  167. Saling, P M., and Lakoski, K. A., 1985, Mouse sperm antigens that participate in fertilization. II. Inhibition of sperm penetration through the zona pellucida using monoclonal antibodies, Biol. Reprod. 33: 527–536.PubMedCrossRefGoogle Scholar
  168. Saling, P. M., and Storey, B. T., 1979, Mouse gamete interactions during fertilization in vitro: Chlortetracycline as fluorescent probe for the mouse sperm acrosome reaction, J. Cell Biol. 83: 544–555.PubMedCrossRefGoogle Scholar
  169. Saling, P. M., Storey, B.T., and Wolf, D. P, 1978, Calcium-dependent binding of mouse epididymal spermatozoa to the zona pellucida, Dev. Biol. 65: 515–525.PubMedCrossRefGoogle Scholar
  170. Saling, P M., Sowinski, J., and Storey, B. T., 1979, An ultrastructural study of epididymal mouse spermatozoa binding to zonae pellucidae in vitro: Sequential relationship to the acrosome reaction, J. Exp. Zool. 209: 229–238.PubMedCrossRefGoogle Scholar
  171. Saling, P. M., Raines, L. M., and O’Rand, M. G., 1983, Monoclonal antibody against mouse sperm blocks a specific event in the fertilization process, J. Exp. Zool. 227: 481–486.PubMedCrossRefGoogle Scholar
  172. Saling, P. M., Irons, G., and Waibel, R., 1985, Mouse sperm antigens that participate in fertilization. I. Inhibition of sperm fusion with the egg plasma membrane using monoclonal antibodies, Biol. Reprod. 33: 515–526.PubMedCrossRefGoogle Scholar
  173. Sato, K., and Blandau, R. J., 1979, Time and process of sperm penetration into cumulus-free eggs fertilized in vitro, Gamete Res. 2: 295–304.CrossRefGoogle Scholar
  174. Schultz, R. M., Endo, Y., Mattei, P, Kurasawa, S., and Kopf, G. S., 1988, Egg-induced modifications of the mouse zona pellucida, in: Cellular Factors in Development and Differentiation—Embryos, Teratocarcinomas, and Differentiated Tissue ( S. Harris and G. Sato, eds.), Alan R. Liss, New York, pp. 77–92.Google Scholar
  175. Shimizu, S., Tsuji, M., and Dean, J., 1983, In vitro biosynthesis of three sulfated glycoproteins of murine zonae pellucidae by oocytes grown in follicle culture, J. Biol. Chem. 258: 5858–5863.Google Scholar
  176. Shur, B. D., and Bennett, D., 1979, A specific defect in galactosyltransferase regulation on sperm bearing mutant alleles of the Tit locus, Dev. Biol. 71: 243–259.PubMedCrossRefGoogle Scholar
  177. Shur, B. D., and Hall, N. G., 1982a, Sperm surface galactosyltransferase activities during in vitro capacitation, J. Cell Biol. 95: 567–573.PubMedCrossRefGoogle Scholar
  178. Shur, B. D., and Hall, N. G., 1982b, A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida, J. Cell Biol. 95: 574–579.PubMedCrossRefGoogle Scholar
  179. Shur, B. D., and Neely, C. A., 1988, Plasma membrane association, purification, and partial characterization of mouse sperm 3–1,4-galactosyltransferase, J. Biol. Chem. 263: 17706–17714.PubMedGoogle Scholar
  180. Soldani, P, and Rosati, F., 1987, Sperm–egg interaction in the mouse using live and glutaraldehyde-fixed eggs, Gamete Res. 18: 225–235.PubMedCrossRefGoogle Scholar
  181. Stefanini, M., Oura, C., and Zamboni, L., 1969, Ultrastructure of fertilization in the mouse. Penetration of the sperm into the ovum, J. Submicrosc. Cytol. 1: 1–23.Google Scholar
  182. Stein, D. M., Fraser, L. R., and Monks, N. J., 1986, Adenosine and Gpp(NH)p modulate mouse sperm adenylate cyclase, Gamete Res. 13: 151–158.CrossRefGoogle Scholar
  183. Suarez, S. S., 1987, Sperm transport and motility in the mouse oviduct: Observations in situ, Biol. Reprod. 36: 203–210.PubMedCrossRefGoogle Scholar
  184. Suarez, S. S., and Osman, R. A., 1987, Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract, Biol. Reprod. 36: 1191–1198.PubMedCrossRefGoogle Scholar
  185. Tash, J. S., and Means, A. R., 1983, Cyclic adenosine 3’,5’-monophosphate, calcium and protein phosphorylation in flagellar motility, Biol. Reprod. 28: 75–104.PubMedCrossRefGoogle Scholar
  186. Tessler, S., and Olds-Clarke, P, 1981, Male genotype influences sperm transport in female mice, Biol. Reprod. 24: 806–813.PubMedCrossRefGoogle Scholar
  187. Tessler, S., and Olds-Clarke, P., 1985, Linear and non linear mouse sperm motility patterns, a quantitative classification, J. Androl. 6: 35–44.PubMedGoogle Scholar
  188. Tessler, S., Carey, J. E., and Olds-Clarke, P, 1981, Mouse sperm motility affected by factors in the Tit complex, J. Exp. Zool. 217: 277–285.PubMedCrossRefGoogle Scholar
  189. Thompson, R. S., Smith, D. M., and Zamboni, L., 1974, Fertilization of mouse ova in vitro: An electron microscopic study, Fertil. Steril. 25: 222–249.PubMedGoogle Scholar
  190. Topfer-Peterson, E., and Henschen, A., 1988, Zona pellucida-binding and fucose-binding of boar sperm acrosin is not correlated with proteolytic activity, Hoppe Seylers Z. Physiol. Chem. 369: 69–76.CrossRefGoogle Scholar
  191. Toyoda, Y., Yokoyama, M., and Hosi, T., 1971a, Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of mouse eggs by fresh epididymal semen, Jpn. J. Anim. Reprod. 16:147–151.Google Scholar
  192. Toyoda, Y., Yokoyama, M., and Hosi, T., 1971b, Studies on the fertilization of mouse eggs in vitro. II. Effects of in vitro incubation of spermatozoa on time of sperm penetration of mouse eggs in vitro, Jpn. J. Anim. Reprod. 16: 152–157.CrossRefGoogle Scholar
  193. Thlsiani, D. R. P., Skudlarek, M. D., and Orgebin-Crist, M.-C., 1989, Novel a-D-mannosidase of rat sperm plasma membranes: Characterization and potential role in sperm–egg interactions, J. Cell Biol. 109: 1257–1267.CrossRefGoogle Scholar
  194. Urch, U. A., Wardrip, N. J., and Hedrick, J. L., 1985, Limited and specific proteolysis of the zona pellucida by acrosin, J. Exp. Zool. 233: 479–483.PubMedCrossRefGoogle Scholar
  195. Vazquez, M. H., Phillips, D. M., and Wassarman, P. M., 1989, Interaction of mouse sperm with purified sperm receptors covalently linked to silica beads, J. Cell Sci. 92: 713–722.PubMedGoogle Scholar
  196. Ward, C. R., and Storey, B. T., 1984, Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay, Dev. Biol. 104: 287–296.PubMedCrossRefGoogle Scholar
  197. Wassarman, P. M., 1987, Early events in mammalian fertilization, Annu. Rev. Cell Biol. 3: 109–142.PubMedCrossRefGoogle Scholar
  198. Wassarman, P. M., 1988, Zona pellucida glycoproteins, Annu. Rev. Biochem. 57: 415–442.PubMedCrossRefGoogle Scholar
  199. Whittingham, D. G., 1968, Fertilization of mouse eggs in vitro, Nature 220: 592–593.PubMedCrossRefGoogle Scholar
  200. Wilde, M. W, and Kopf, G. S., 1989, Activation of a G-protein in mammalian sperm by an egg-associated extracellular matrix, the zona pellucida, Z Cell Biol. 109: 251a.Google Scholar
  201. Wolf, D. P., 1977, Involvement of a trypsin-like activity in sperm penetration of zona-free mouse ova, J. Exp. Zool. 199: 149–156.PubMedCrossRefGoogle Scholar
  202. Wolf, D. P, 1978, The block to sperm penetration in zona-free mouse eggs, Dev. Biol. 64: 1–10.PubMedCrossRefGoogle Scholar
  203. Wolf, D. P, 1979, Mammalian fertilization, in: The Biology of the Fluids of the Female Genital Tract ( F. K. Beller and G. F. B. Schumacher, eds.), Elsevier/North-Holland, Amsterdam, pp. 407–414.Google Scholar
  204. Wolf, D. P, and Armstrong, P. B., 1978, Penetration of the zona-free mouse egg by capacitated epididymal sperm: Cinemicrographic observations, Gamete Res. 1: 39–46.CrossRefGoogle Scholar
  205. Wolf, D. P., and Hamada, M., 1977, Induction of zonal and egg plasma membrane blocks to sperm penetration in mouse eggs with cortical granule exudate, Biol. Reprod. 17: 350–354.PubMedCrossRefGoogle Scholar
  206. Wolf, D. P, and Hamada, M., 1979, Sperm binding to the mouse egg plasmalemma, Biol. Reprod. 21: 205–211.PubMedCrossRefGoogle Scholar
  207. Wolf, D. P, and Inoue, M., 1976, Sperm concentration dependency in the fertilization and zona sperm binding properties of mouse eggs inseminated in vitro, J. Exp. Zool. 196: 27–38.PubMedCrossRefGoogle Scholar
  208. Wolf, D. P, Inoue, M., and Stark, R. A., 1976, Penetration of zona-free mouse ova, Biol. Reprod. 15: 213–221.PubMedCrossRefGoogle Scholar
  209. Wolf, D. P, Hamada, M., and Inoue, M., 1977, Kinetics of sperm penetration into and the zona reaction of mouse ova inseminated in vitro, J. Exp. Zool. 201: 29–36.PubMedCrossRefGoogle Scholar
  210. Yanagimachi, R., 1970, In vitro capacitation of golden hamster spermatozoa by homologous and heterologous blood sera, Biol. Reprod. 3: 147–153.Google Scholar
  211. Yanagimachi, R., 1972, Fertilization of guinea pig eggs in vitro, Anat. Rec. 174: 9–20.PubMedCrossRefGoogle Scholar
  212. Yanagimachi, R., 1981, Mechanisms of fertilization in mammals, in: Fertilization and Embryonic Development in Vitro ( L. Mastroianni and J. D. Biggers, eds.), Plenum Press, New York, pp. 81–182.CrossRefGoogle Scholar
  213. Yanagimachi, R., 1988, Mammalian fertilization, in: The Physiology of Reproduction ( E. Knobil and J. D. Neill, eds.), Raven Press, New York, pp. 135–185.Google Scholar
  214. Yanagimachi, R., and Noda, Y. D., 1970, Ultrastructural changes in the hamster sperm head during fertilization, J. Ultrastruct. Res. 31: 465–484.PubMedCrossRefGoogle Scholar
  215. Yarden, Y., and Schlessinger, J., 1987, Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor, Biochemistry 26: 1443–1451.PubMedCrossRefGoogle Scholar
  216. Yarden, Y., and Ullrich, A., 1988, Growth factor receptor tyrosine kinases, Annu. Rev. Biochem. 57: 443–448.PubMedCrossRefGoogle Scholar
  217. Young, J. M., Hiley, J. R., and Burger, A. S. V, 1972, Homologues of benzilylcholine mustard, J. Pharm. Pharmacol. 24: 950–954.PubMedCrossRefGoogle Scholar
  218. Yu, S.-F., and Wolf, D. P, 1981, Polyspermic eggs can dispose of supernumerary sperm, Dev. Biol. 82: 203–210.PubMedCrossRefGoogle Scholar
  219. Zamboni, L., 1970, Ultrastructure of mammalian oocytes and ova, Biol. Reprod. [Suppl.) 2: 44–63.CrossRefGoogle Scholar
  220. Zamboni, L., 1971, Acrosome loss in fertilizing mammalian spermatozoa; A clarification, J. Ultrastruct. Res. 34: 401–405.PubMedCrossRefGoogle Scholar
  221. Zamboni, L., 1972, Fertilization in the mouse, in: Biology of Mammalian Fertilization and Implantation ( K. S. Moghissi and E. S. E. Hafez, eds.), Charles C. Thomas, Springfield, IL, pp. 213–262.Google Scholar
  222. Zamboni, L., and Stefanini, M., 1968, On the configuration of the plasma membane of the mature spermatozoon, Fertil. Steril. 19: 570–579.PubMedGoogle Scholar
  223. Zimmerberg, J., 1987, Molecular mechanisms of membrane fusion: Steps during phospholipid and exocytotic membrane fusion, Biosci. Rep. 7: 251–268.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Bayard T. Storey
    • 1
  • Gregory S. Kopf
    • 1
  1. 1.Division of Reproductive Biology, Department of Obstetrics and GynecologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations