Target Detection and Imaging Using a Stepped-Frequency Ultra-Wideband Radar

  • E. J. Rothwell
  • K. M. Chen
  • D. P. Nyquist
  • A. Norman
  • G. Wallinga
  • Y. Dai

Abstract

Interest in ultra-wideband radar systems for target detection, identification and imaging arises from both the clutter suppression capability of the radar and its potentially high resolution. Several time-domain radar systems have been tested1,2 but difficulties in the generation, radiation and reception of high-energy pulses, and the potential for interference with existing communications systems, make the construction of a time-domain system problematic. The Naval Ocean Systems Center is developing an alternative radar system, which will have several hundred narrow band channels within a 1 GHz bandwidth centered in C or X-band. The data gathered by this system can be used to synthesize equivalent time-domain target responses for detection or identification.

Keywords

Radar System Scattered Field Thickness Function Correction Field Clutter Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Phillips, P. Johnson, K. Garner, G. Smith, A. Shek, R.C. Chou, and S. Leong, Ultra-high-resolution radar development and test, in: Ultra-Wideband, Short-Pulse Electromagnetics 2, Lawrence Carin and Leopold B. Felsen, ed., Plenum Press, New York (1995).Google Scholar
  2. 2.
    P. Hansen, M.Sletten and K. Scheff, Ultrawideband, impulse driven X-band Clutter Measurement Radar,1995 URSI Radio Science Meeting Digest,p. 270.Google Scholar
  3. 3.
    K.M. Chen, E. Rothwell, D.P. Nyquist, J. Ross, P. Ilavarasan, R. Bebermeyer, Q. Li, C.Y. Tsai and A. Norman, Radar identification and detection using ultra-wideband/short-pulse radars, in: Ultra-Wideband, Short-Pulse Electromagnetics 2, Lawrence Carin and Leopold B. Felsen, ed.. Plenum Press, New York (1995).Google Scholar
  4. 4.
    E. Rothwell, K.M. Chen, D.P. Nyquist, P. Ilavarasan, J.E. Ross, R. Bebermeyer, and Q. Li, A general E-pulse scheme arising from the dual early-time/late-time behavior of radar scatters, IEEE Trans. Ant. Propagat., 42: 1336 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    J. D. Young, Radar imaging from ramp response signatures, IEEE Trans. Ant. Propagat, AP-24: 276 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    N. N. Bojarski, A survey of the physical optics inverse scattering identity, IEEE Trans. Ant. Propagat, AP-30: 980 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C. L. Bennett, Time domain inverse scattering, IEEE Trans. Ant. propagat, AP-29: 213 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    S. R. Deans. The Radon Transform and Some of its Applications, John Wiley and Sons, 1983.Google Scholar
  9. 9.
    E.J. Rothwell, K.M. Chen, D.P. Nyquist, and J.E. Ross, Time-domain imaging of airborne targets using ultra-wideband or short-pulse radar, IEEE Trans. Ant. Propagat, 43: 327 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • E. J. Rothwell
    • 1
  • K. M. Chen
    • 1
  • D. P. Nyquist
    • 1
  • A. Norman
    • 1
  • G. Wallinga
    • 1
  • Y. Dai
    • 1
  1. 1.Department of Electrical EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations