Transportation Demand Models

  • Ennio Cascetta
Part of the Applied Optimization book series (APOP, volume 49)

Abstract

Recall from Chapter 1 that transportation demand derives from the need to carry out activities in different locations. Thus, its level and characteristics are influenced by the activity system and the transportation supply in the area.

Keywords

Mode Choice Demand Model Route Choice Systematic Utility Trip Purpose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference Notes

  1. [261]
    Wilson A.G. (1974). Urban and regional models in geography and planning. John Wiley and Sons, London.Google Scholar
  2. [147]
    Hutchinson G. (1974). Principles of urban transportation systems planning. McGraw-Hill, New York.Google Scholar
  3. [109]
    Domencich T. A., and D. McFadden (1975). Urban travel demand: a behavioural analysis. American Elsevier, New York.Google Scholar
  4. [228]
    Richards M., and M. Ben Akiva (1975). A Disaggregate Travel Demand Model. D.C. Heath, Lexington, Mass.Google Scholar
  5. [178]
    Manheim M. (1979). Fundamentals of transportation systems analysis MIT Press, Cambridge, Mass.Google Scholar
  6. [19]
    Ben-Akiva M., and S. Lerman (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge, Mass.Google Scholar
  7. [216]
    Ortuzar J.de D., and L.G. Willumsen (1994). Modelling Transport John Wiley and Sons, 2nd edition.Google Scholar
  8. [212]
    Oi W.Y., and P.W. Shuldiner (1972). An Analysis of Urban Travel Demands. Northwestern University Press, Evanston.Google Scholar
  9. [31]
    Biggiero L. (1991). Un modello Comportamentale per la Generazione degli Spostamenti non sistematici in area urbana Trasporti e Trazione 4.Google Scholar
  10. [63]
    Cascetta E., A. Nuzzolo, and L. Biggiero (1995). A system of behavioural models for the simulation of intercity travel demand in Italy. Proceedings of the 7`h WCTR, Sydney, Australia.Google Scholar
  11. [155]
    Kimber R.M., and E.M. Hollis (1978). Peak period delays at road junctions and other bottlenecks Traffic Engineering and Control 19.Google Scholar
  12. [157]
    Kitamura R., L. Kostyniuc, and K.L. Ting (1979). Aggregation in Spatial Choice Modelling. Transportation Science 13: 325–342.Google Scholar
  13. [68]
    Cascetta E., and A. Papota (2000). A joint mode-run choice model to simulate the schedule influence at a regional level. Proceedings of the 9th IATBR conference, Sidney, Australia.Google Scholar
  14. [60]
    Cascetta E. (1995). Modelli di scelta del percorso su reti di trasporto. Proceedings of the seminary “Assegnazioni alle reti di trasporto” Department of Civil Engineering, University of Rome “Tor Vergata”, Italy.Google Scholar
  15. [22]
    Ben Akiva M., M. Cyna, and A. de Palma (1984). Dynamic model of peak period congestion. Transportation Research 18B: 339–355.Google Scholar
  16. [231]
    Russo F., and A. Vitetta (1995). Networks and assignment models for the Italian national transportation systems. Proceeding of the 7th WCTR, Sidney, Australia.Google Scholar
  17. [65]
    Cascetta E., A. Nuzzolo, F. Russo, and A. Vitetta (1996). A new route choice logit model overcoming IIA problems: specification and some calibration results for interurban networks. Proceedings of the 13th International Symposium on Transportation and Traffic Theory ( Jean-Baptiste Lesort ed. ), Pergamon Press.Google Scholar
  18. [67]
    Cascetta E., and A. Nuzzolo (1986). Uno schema comportamentale per la modellizzazione delle scelte di percorso nelle reti di trasporto pubblico urbano. Proceedings of the I V PFT-CNR conference, Turin, Italy.Google Scholar
  19. [51]
    Cantarella G.E., and E. Cascetta (1995). Dynamic Processes and Equilibrium in Transportation Networks: Towards a Undying Theory. Transportation Science 29: 305–329.Google Scholar
  20. [8]
    Antonisse R.W., A. Daly, and H. Gunn (1986). The primary destination tour approach to modelling trip chains. Proceedings of Seminar M on Transportation Planning Methods at the 14th PTRC Summer Annual Meeting, University of Sussex, England.Google Scholar
  21. [6]
    Algers S., A. Daly, and S. Widlert. (1993). The Stockholm Model System. Technical report, Hague Consulting Group, The Hague, The Netherlands.Google Scholar
  22. [64]
    Cascetta E., A. Nuzzolo, and V. Velardi (1994). A time of the day tour based trip chaining model system for urban transportation planning. in Transportation Planning Methods, Vol. I. Proceedings of the 22nd PTRC Summer Annual Meeting, University of Warwick, England.Google Scholar
  23. [125]
    Friesz T.L., R.L. Tobin, and P.T. Harker (1983). Predictive intercity freight network models: the state of the art. Transportation Research 17A: 409–417.Google Scholar
  24. [132]
    Harker P.T. (1985). Spatial Price Equilibrium: Advances in Theory, Computation and Application. Springer Verlag, Heidelberg.MATHCrossRefGoogle Scholar
  25. [133]
    Harker P.T. (1987). Predicting Intercity Freight Flows. Topics in Transportation, VNU Science Press, Utrecht, The Netherlands.Google Scholar
  26. [149]
    Isard W. (1951). Interregional and regional input-output analysis: a model of a space-economy The Review of Economics and Statistics 33: 318–328.Google Scholar
  27. [166]
    Leontief W., and P. Costa (1987). Il trasporto merci e l’economia italiana. Scenari di interazione al 2000 e al 2015. Sistemi Operativi, New York-Venice.Google Scholar
  28. [90]
    Costa P., and R. Roson (1988). Transport margins, transportation industry and the multiregional economy. Some experiments with a model for Italy. Ricerche Economiche 2: 237–287.Google Scholar
  29. [52]
    Cantarella G.E., and E. Cascetta (1998). Stochastic Assignment to Transportation Networks: Models and Algorithms. In Equilibrium and Advanced Transportation Modelling, P. Marcotte, S.Nguyen (editors): 87107. ( Proceedings of the International Colloquium, Montreal, Canada October, 1996 ).Google Scholar
  30. [27]
    Bergman L. (1990). The development of computable general equilibrium modeling. in General equilibrium modelling and economic policy analysis (Bergman L., Jorgenson Dale W., Zalai E. ed.) Blackwell, Oxford.Google Scholar
  31. [12]
    Bayliss B. (1988). The Measurement of Supply and Demand in Freight Transport. Hants, England, Avebury Grower Publishing Company Ltd.Google Scholar
  32. [262]
    Winston C. (1983). The demand for Freight Transportation: Models and Applications Transportation Research 17A: 419–427.Google Scholar
  33. [206]
    Nuzzolo A., and F. Russo (1995). A disaggregate freight modal choice model. Proceedings of 7th WCTR, Sydney, Australia.Google Scholar
  34. [192]
    Modenese Vieira L.F. (1992). The value of service in freight transportation. Ph.D. thesis, MIT, Boston.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Ennio Cascetta
    • 1
  1. 1.Dipartimento di Ingegneria dei Trasporti “Luigi Tocchetti”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations