Spontaneous Breaking of Translational Invariance in Quantum Electrodynamics

  • E. S. Fradkin
  • A. E. Shabad
Part of the The Lebedev Physics Institute Series book series (LPIS, volume 57)


In this paper we seek solutions that break translational invariance spontaneously. The usual procedure of quantum field theory is adapted to finding solutions with the same symmetry as the original Hamiltonian. But, physically, it is perfectly possible for solutions with broken symmetry to be realized. In recent years there have therefore been many investigations (following Nambu’s pioneering work) devoted to spontaneous symmetry breaking in quantum field theory. One usually proceeds from the unrenormalized system of equations. It seems to us more consistent (and, at the least, more convenient) to use the renormalized system of equations, which enables one to avoid infinities and the need to introduce cutoff parameters and all that this entails.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. S. Fradkin and A. E. Shabad, P. N. Lebedev Physics Institute Preprint N6, Moscow (1967).Google Scholar
  2. 2.
    A. E. Shabad, Dissertation [in Russian], P. N. Lebedev Physics Institute (1968)Google Scholar
  3. 3.
    E. S. Fradkin, Zh. Eksp, Teor. Fiz., 26: 751 (1954).Google Scholar
  4. 4.
    Echwr(133)S. Fradkin, Trudy FIAN, 29: 7 (1965).Google Scholar
  5. 5.
    A. D. Galanin, B. L. Ioffe, and I. Ya. Pbmeranchuk, Doki, Akad. Nauk SSSR, 98: 361 (1954).Google Scholar
  6. 6.
    E. S. Fradkin, Zh. Eksp. Teor, Fiz., 29: 121 (1955).Google Scholar
  7. 7.
    J. D. Bjorken, Ann. Phys., 24:176 (1963); G. S. Guralnik, Phys. Rev., 136: B1404 (1964).Google Scholar
  8. 8.
    L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR, 95: 1177 (1954).Google Scholar
  9. 9.
    E. S. Fradkin, Zh. Eksp. Teor. Fiz., 28: 750 (1955).Google Scholar
  10. 10.
    L. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR, 102: 489 (1955).Google Scholar
  11. 11.
    P. I. Redmond, Phys. Rev., 112:1404 (1958); P. I. Redmond and J. L. Uretsky, Phys. Rev. Letters, 1:147 (1958); N. N. Bogolyubov, A. A. Logunov, and D. V. Shirkov, Zh. Eksp. Teor. Fiz., 37: 805 (1959).Google Scholar
  12. 12.
    D. A. Kirzhnits, V. Ya. Fainberg, and E. S. Fradkin, Zh. Eksp. Teor. Fiz., 38: 239 (1960).Google Scholar
  13. 13.
    F. A. Berezin, Dokl. Akad. Nauk SSSR, 143: 811 (1962).Google Scholar
  14. 14.
    B. L. Voronov, Zh. Eksp. Teor. Fiz., 54: 1817 (1968).Google Scholar
  15. 15.
    K. Johnson, M. Baker, and R. Willey, Phys. Rev. Letters, 11:518 (1963); Phys. Rev„ 136:B111 (1964); J. Bosner, Univ. of Washington Preprint RLO-1388–507 (1967).Google Scholar
  16. 16.
    Yu. A. Gol’fand, Yad. Fiz., 7: 183 (1968).Google Scholar
  17. 17.
    J. Des Cloisaux, J. Phys. Radium, 20:607, 707 (1960); L. G. Soos, J. Chem. Phys., 43:1121 (1965); D. A. Kirzhnits and Yu. A. Nepomnyashchii, Zh. Eksp. Teor. Fiz. Pis. Red., 4:96 (1966)Google Scholar
  18. 18.
    I. A. Batalin and A. E. Shabad, Preprint [in Russian], P. N. Lebedev Physics Institute, No. 166, Moscow (1968).Google Scholar
  19. 19.
    A. E. Shabad, Yad. Fiz., 7: 685 (1968).Google Scholar
  20. 20.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part 2, Cambridge (1965).Google Scholar
  21. 21.
    V. Chung, Phys. Rev., 140: B1, 110 (1965).Google Scholar
  22. 22.
    T. W. B. Kibble, Phys. Rev., 175: 1624 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • E. S. Fradkin
  • A. E. Shabad

There are no affiliations available

Personalised recommendations