Plasmas

Physics and Chemistry
  • Ivor Brodie
  • Julius J. Muray
Chapter
Part of the Microdevices book series (MDPF)

Abstract

Plasmas are used extensively in microfabrication processes, including
  • Deposition of thin films by sputtering, ion plating, plasma-enhanced chemical vapor deposition, and plasma polymerization

  • Removal of surface layers and films by sputter etching, reactive ion etching, and resist stripping

  • Sources of ions for ion implantation, and focused ion beam patterning

Keywords

Glow Discharge Inelastic Collision Collision Cross Section Electron Cyclotron Resonance Elastic Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Thornton, Diagnostic methods for sputtering plasmas, J. Vac. Sci. Technol. 15, 188 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    H. S. W. Massey, E. H. S. Burhop, and H. B. Gisbody, Electronic and Ionic Impact Phenomena, 3 volumes, Oxford University Press, New York (1971).Google Scholar
  3. 3.
    J. J. Thomson and G. P. Thomson, The Conduction of Electricity Through Gases, Cambridge University Press, London (1933).MATHGoogle Scholar
  4. 4.
    B. Chapman, Glow Discharge Processes, Wiley, New York (1980).Google Scholar
  5. 5.
    S. C. Brown, Basic Data of Plasma Physics, Wiley, New York (1959).Google Scholar
  6. 6.
    L. B. Loeb, Electrical Coronas, University of California Press, Berkeley (1965).Google Scholar
  7. 7.
    J. D. Cobine, Gaseous Conductors, McGraw-Hill (reprinted by Dover) (1941).Google Scholar
  8. 8.
    A. von Engle, Ionized Gases, Oxford University Press ( Clarendon ), London (1955).Google Scholar
  9. 9.
    V. N. Kondratiev, Chemical Kinetics of Gas Reaction, Addison-Wesley, Reading, Mass. (1964).Google Scholar
  10. 10.
    E. W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York (1964).Google Scholar
  11. 11.
    E. H. Holt and R. H. Haskell, Foundations of Plasma Dynamics, Macmillan Co., New York (1965).Google Scholar
  12. 12.
    S. C. Brown, Introduction to Electrical Discharges in Gases, Wiley, New York (1966).Google Scholar
  13. 13.
    L. J. Kieffer, Bibliography of Low Energy Electron Collision Cross Section Data, NBS Publ. 289, AD-649 862, and Suppl. AD-865 520, Government Printing Office, Washington, D.C. (1967).Google Scholar
  14. 14.
    G. Carter and J. S. Colligan, Ion Bombardment of Solids, Elsevier, Amsterdam (1969).Google Scholar
  15. 15.
    E. W. McDaniel, V. Cermak, A. Dalgarno, E. E. Ferguson, and L. Friedman, Ion-Molecule Reactions, Wiley-Interscience, New York (1970).Google Scholar
  16. 16.
    A. T. Bell, in: Techniques and Applications of Plasma Chemistry ( J. R. Hollohan and A. T. Bell, eds.), Wiley, New York (1974).Google Scholar
  17. 17.
    A. Rutscher, Progress in electron kinetics of low pressure discharges and related phenomena, Proc. 13th International Congress on Phenomena in Ionized Gases, Physical Society of the German Democratic Republic, Leipzig, pp. 269–289 (1977).Google Scholar
  18. 18.
    J. Thornton, in: Deposition Technologies for films and Coatings (J. R. Bunshah, ed.), pp. 19–62, Noyes Press, Park Ridge, N.J. (1982).Google Scholar
  19. 19.
    T. Halicioglu and W. Bauschlicher, Jr., Physics of microclusters, Rep. Prog. Phys. 51, 883–921 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    T. Takagi, I. Yamada, and A.Sasaki, Ionized cluster beam technology, Proc. Conf Ion Plating and Allied Technologies, Edinburgh, Scotland (1977).Google Scholar
  21. 21.
    I. Yamada, in: Semiconductors and Semimetals ( J. I. Pankove, ed.), Academic Press, New York (1984).Google Scholar
  22. 22.
    J. R. Acton and I. D. Swift, Cold Cathode Dischage Tubes, Academic Press, New York (1963).Google Scholar
  23. 23.
    M. F. Druvesteyn and F. M. Penning, The mechanism of electrical discharges in gases of low pressure, Rev. Mod. Phys. 12, 88 (1940).ADSGoogle Scholar
  24. 24.
    J.H. Keller and R. G. Simmons, Sputtering process model of deposition rate, IBM J. Res. Deb. 23(1), 24–32 (January, 1979 ).Google Scholar
  25. 25.
    W. B. Pennebaker, Influence of scattering and ionization on R.F. impedance of glow discharge sheaths, IBM J. Res. Dee. 23(1), 16–23 (January, 1979 ).Google Scholar
  26. 26.
    H. S. Butler and G. S. Kino, Plasma sheath formation by radiofrequency fields, Phys. Fluids 6(9), 1346–1355 (September, 1963 ).Google Scholar
  27. 27.
    I. Brodie, L. T. Lamont, Jr., and D. O. Myers, Substrate bombardment during RF sputtering, J. Vac. Sci. Technol. 5(5), 175 (September, 1968 ).Google Scholar
  28. 28.
    J. H. Keller and W. B. Pennebaker, Electrical properties of R.F. sputtering systems, IBM J. Res. Dev. 23(1), 3–15 (January, 1979 ).Google Scholar
  29. 29.
    R. E. Collins, Foundations for Microwave Engineering, McGraw-Hill, New York (1966).Google Scholar
  30. 30.
    A. D. MacDonald, Microwave Breakdown in Gases, Wiley, New York (1966).Google Scholar
  31. 31.
    F. K. McTaggart, Plasma Chemistry in Electrical Discharges, Elsevier, Amsterdam (1967).Google Scholar
  32. 32.
    A. T. Bell, Fundamentals of Plasma Chemistry, J. Vac. Sci. Technol. 16(2), 418–419 (March/April, 1979 ).Google Scholar
  33. 33.
    T. B. Reed, in: The Application of Plasmas to Chemical Processing ( R. F. Baddour and R. S. Timmins, eds.), pp. 26–34, MIT Press, Cambridge, Mass. (1967).Google Scholar
  34. 34.
    C. F. Powell, J. H. Oxley, and J. M. Blocker, Jr. (eds.), Vapor Deposition, Wiley, New York (1966).Google Scholar
  35. 35.
    M. J. Rand, Plasma-promoted deposition of thin inorganic films, J. Vac. Sci. Technol. 16(2), 420427 (March/April 1979 ).Google Scholar
  36. 36.
    A. von Engel, Handbuch der Physik, Vol. 21, p. 504, Springer-Verlag, Berlin (1956).Google Scholar
  37. 37.
    D. ter Haar, Elements of Statistical Mechanics, p. 381, Holt, Rinehart & Winston, New York (1960).Google Scholar
  38. 38.
    J. Jeans, An Introduction to the Kinetic Theory of Gases, Macmillan Co., New York (1940).Google Scholar
  39. 39.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, London (1939).Google Scholar
  40. 40.
    S. Dushman and J. M. Lafferty, Scientific Foundations of Vacuum Technique, 2nd ed., Wiley, New York (1962).Google Scholar
  41. 41.
    Product and Vacuum Technology Reference Book, Leybold-Heraus, Export, Pa. (1988).Google Scholar
  42. 42.
    G. L. Saksagaskii, Molecular Flow in Complex Vacuum Systems, Gordon & Breach, New York (1988).Google Scholar
  43. 43.
    W. Stechelmacher, Knudsen flow 75 years on, Rep. Prog. Phys. 49, 1083–1107 (1986).ADSCrossRefGoogle Scholar
  44. 44.
    R. W. Kiser, Introduction to Mass Spectrometry and Its Applications, Prentice-Hall, Englewood Cliffs, N.J. (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ivor Brodie
    • 1
  • Julius J. Muray
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations