Physical and Psychophysical Measurement of Images

  • Kevin S. Berbaum
  • Mark Madsen
  • Donald D. Dorfman

Abstract

In this chapter, we consider how medical images may be evaluated in terms of the information they provide to human observers. Much of this book discusses what is known about the registration and interpretation of visual data within the human visual system. This knowledge, the product of a large psychophysical and neurophysiological literature, is fundamental to any attempt to characterize imagery: it specifies the dimensions, properties, and aspects of images that are informative. An understanding of visual perception should educate our attempts to characterize images by means of physical measurements. Beyond this, the psychophysical literature provides a family of methodologies for assessing diagnostic performance of imaging systems in which human observers serve as pattern recognizers. Psychophysical methods assess psychological response to variation in physical stimuli. These procedures can be applied even where little is known about the underlying recognition process itself or where the physics of the imaging process is not well understood. The best known and most widely used psychophysical method in medical imaging research generates receiver operating characteristic (ROC) curves. The second part of this chapter is devoted to an introduction to current use of these methods.

Keywords

Receiver Operating Characteristic Receiver Operating Characteristic Curve True Positive Modulation Transfer Function Count Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    Hunt E.B. Artificial Intelligence. New York: Academic; 1985.Google Scholar
  2. 9.2
    Minsky M. Steps toward artificial intelligence. Proc. IRE 1961; 49: 8–30.MathSciNetCrossRefGoogle Scholar
  3. 9.3
    Chan F.H., Pizer S.M. An ultrasonogram display system using a natural color scale. J. Clin. Ultrasound 1976; 4: 335–338.CrossRefGoogle Scholar
  4. 9.4
    Pizer S.M., Zimmerman J.B. Color display in ultrasonography. Ultrasound Med. Biol. 1983; 9: 331–345.CrossRefGoogle Scholar
  5. 9.5
    Katsuragawa S., Doi K., MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiology: Detection and characterization of interstitial lung disease in digital chest radiographs. Med. Phys. 1988; 15: 311–319.CrossRefGoogle Scholar
  6. 9.6
    Katsuragawa S., Doi K., MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiology: Classification of normal and abnormal lungs with interstitial disease in chest images. Med. Phys. 1989; 16: 38–44.CrossRefGoogle Scholar
  7. 9.7
    Powell G., Doi K., Katsuragawa S. Localization of interrib spaces for lung texture analysis and computer-aided diagnosis in digital images. Med. Phys. 1988; 15: 581–587.CrossRefGoogle Scholar
  8. 9.8
    Biederman I. Recognition by components: A theory of human image understanding. Psychol. Rev. 1987; 94: 115–147.CrossRefGoogle Scholar
  9. 9.9
    Berbaum K.S., Franken E.A., Honda H., McGuire C., Weis R.R., Barloon T. Evaluation of a PACS workstation for interpreting body CT studies. J. Comput. Asst. Tomog. 1990; 14: 853–858.CrossRefGoogle Scholar
  10. 9.10
    Berbaum K.S., Smoker W.R.K., Smith W.L. Measurement and prediction of diagnostic performance during radiology training. Am. J. Roentg. 1985; 145: 1305–1311.Google Scholar
  11. 9.11
    Rogers D., Johnston R., Brenton B., Staab E., Thompson B., Perry J. Predicting PACS console requirements from radiologists’ reading habits. Proc. SPIE 1985; 536: 88–96.CrossRefGoogle Scholar
  12. 9.12
    Rogers D., Johnston R., Hemminger B., Pizer S. Development of and experience with a prototype medical image display. Presented at the Far West Image Perception Conference, Department of Radiology, University of New Mexico, 1986.Google Scholar
  13. 9.13
    Pizer S.M., Johnston R.E., Rogers R.C., Beard D.V. Effective presentation of medical images on an electronic display station. Radiographics 1987; 7: 1267 1274.Google Scholar
  14. 9.14
    Carmody D.P., Nodine C.F., Kundel H.L. Finding lung nodules with and with- out comparative visual scanning. Percept. Psychophys..1981; 29: 594–598.Google Scholar
  15. 9.15
    Franken E.A., Berbaum K.S. Perceptual aspects of cardiac imaging. In: Marcus M.L., Schelbert H.R., Skorton D.J., Wolf G., eds. Cardiac Imaging-Principles and Practice: A Companion to Braunwald’s Heart Disease. Philadelphia: Sanders; 1991: 87–92.Google Scholar
  16. 9.16
    Green D.M., Swets J.A. Signal Detection Theory and Psychophysics. New York: Wiley; 1966.Google Scholar
  17. 9.17
    Wagner R.F., Brown D.G. Unified SNR analysis of medical imaging systems. Phys. Med. Biol. 1985; 30: 498–518.CrossRefGoogle Scholar
  18. 9.18
    Rose A. Vision, Human and Electronic. New York: Plenum; 1973.Google Scholar
  19. 9.19
    Wagner R.F. Toward a unified view of radiological imaging systems. Part II. Noisy images. Med. Phys. 1977; 4: 279–296.CrossRefGoogle Scholar
  20. 9.20
    Schnitzler A.D. Analysis of noise required contrast and modulation in image detecting and display systems. In: Biberman L.C., ed. Perception of Displayed Information. New York: Plenum; 1973: 119–166.CrossRefGoogle Scholar
  21. 9.21
    Giger M.L., Doi K. Investigation of basic imaging properties in digital radiography. 3. Effect of pixel size on SNR and threshold contrast. Med. Phys. 1985; 12: 201–208.CrossRefGoogle Scholar
  22. 9.22
    Ohara K., Doi K., Metz C.E., Giger M.L. Investigation of basic imaging properties in digital radiography. 13. Effect of simple structured noise on the detectibility of simulated stenotic lesions. Med. Phys. 1989; 16: 14–21.CrossRefGoogle Scholar
  23. 9.23
    Giger M.L., Doi K. Investigation of basic imaging properties in digital radiography. 1. Modulation transfer function. Med. Phys. 1984; 11: 287–293.CrossRefGoogle Scholar
  24. 9.24
    Dainty J.C., Shaw R. Image Science. New York: Academic; 1974.Google Scholar
  25. 9.25
    Schade O. Optical and photoelectric analog of the eye. J. Opt. Soc. Am. 1956; 46: 721–739.CrossRefGoogle Scholar
  26. 9.26
    Morgan R.H. Threshold visual perception and its relationship to photon fluctuations and sine-wave response. Am. J. Roentg. 1965; 93: 982–997.Google Scholar
  27. 9.27
    Sorenson J.A., Phelps M.E. Physics in Nuclear Medicine ( 2nd ed. ). New York: Grune and Stratton; 1987: 115–142.Google Scholar
  28. 9.28
    Kijewski M.F., Judy P.F. The noise power spectrum of CT images. Phys. Med. Biol. 1987; 32: 565–575.CrossRefGoogle Scholar
  29. 9.29
    Moore S.C., Kijewski M.F., Mueller S.P., Holman B.L. SPECT image noise power: Effects of nonstationary projection noise and attenuation compensation. J. Nucl. Med. 1988; 29: 1704–1709.Google Scholar
  30. 9.30
    Giger M.L., Doi K., Metz C.E. Investigation of basic imaging properties in digital radiography. 2. Noise Wiener spectrum. Med. Phys. 1984; 11: 797–805.CrossRefGoogle Scholar
  31. 9.31
    Bracewell R.N. The Fourier Transform and its Applications ( 2nd ed. ). New York: McGraw-Hill; 1978.MATHGoogle Scholar
  32. 9.32
    Riederer S.J., Pelc N.J., Chesler D.A. The noise power spectrum in computed X-ray tomography. Phys. Med. Biol. 1978; 23: 446–454.CrossRefGoogle Scholar
  33. 9.33
    Sandrik J.M., Wagner R.F. Absolute measures of physical image quality: Measurement and application to radiographic magnification. Med. Phys. 1982; 9: 540–549.CrossRefGoogle Scholar
  34. 9.34
    Wagner R.F., Brown D.G., Pastel M.S. Application of information theory to the assessment of computed tomography. Med. Phys. 1979; 6: 83–94.CrossRefGoogle Scholar
  35. 9.35
    Hanson K.M. Detectibility in computed tomogiaphic images. Med. Phys. 1979; 6: 441–451.CrossRefGoogle Scholar
  36. 9.36
    Judy P., Swensson R.G., Szulc M. Lesion detection and signal-to-noise ratio in CT images. Med. Phys. 1981; 8: 13–23.CrossRefGoogle Scholar
  37. 9.37
    Cohen G. Contrast detail analysis of imaging systems: Caveats and kudos. In: Doi K., Lanzl L., Lin P.J., eds. Recent Developments in Digital Imaging (AAPM Medical Physics Monograph 12 ). New York: American Institute of Physics; 1985: 141–159.Google Scholar
  38. 9.38
    Cohen G., McDaniel D.L., Wagner L.K. Analysis of variations in contrast detail experiments. Med. Phys. 1984; 11: 469–473.CrossRefGoogle Scholar
  39. 9.39
    Wald A. Statistical Decision Functions. New York: Wiley; 1950.MATHGoogle Scholar
  40. 9.40
    Peterson W.W., Birdsall T.G., Fox W.C. The theory of signal detectibility. Trans. IRE Prof. Grp. Inform. Theory 1965; PGIT-4: 171–212.Google Scholar
  41. 9.41
    Tanner W.P., Swets J.A. A decision-making theory of visual detection. Psycho!. Rev. 1954; 61: 401–409.CrossRefGoogle Scholar
  42. 9.42
    McNicol D. A Primer of Signal Detection Theory. London: Allen and Unwin; 1972.Google Scholar
  43. 9.43
    Gescheider G.A. Psychophysics: Method, Theory, and Application ( 2nd ed. ). Hillsdale: Erlbaum; 1985: 135–166.Google Scholar
  44. 9.44
    Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36.Google Scholar
  45. 9.45
    Hanley J.A., McNeil B.J. A method of comparing receiver operating characteristic curves derived from the same cases. Radiology 1983; 148: 839–843.Google Scholar
  46. 9.46
    Kundel H.L., Revesz G. The evaluation of radiographic techniques by observer tests: Problems, pitfalls, and procedures. Invest. Radio!. 1974; 9: 166–173.CrossRefGoogle Scholar
  47. 9.47
    Lusted L.B. General problems in medical decision making, with comments on ROC analysis. Semin. Nucl. Med. 1978; 8: 299–306.CrossRefGoogle Scholar
  48. 9.48
    McNeil B.J., Keeler E., Adelstein S.J. Primer on certain elements of medical decision making. N. Engl. J. Med. 1975; 293: 211–215.CrossRefGoogle Scholar
  49. 9.49
    McNeil B.J., Hanley J.A. Statistical approaches to the analysis of receiver operating characteristics (ROC) curves. Med. Decis. Making 1984; 4: 137–150.CrossRefGoogle Scholar
  50. 9.50
    McNeil B.J., Hanley J.A., Funkenstein H.H., Wallman J. Paired receiver operating characteristic curves and the effect of history on radiographic interpretation: CT of the head as a case study. Radiology 1983; 149: 75–77.Google Scholar
  51. 9.51
    Metz C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978; 8: 283–298.CrossRefGoogle Scholar
  52. 9.52
    Metz C.E. ROC methodology in radiographic imaging. Invest. Radio!. 1986; 21: 720–733.CrossRefGoogle Scholar
  53. 9.53
    Swets J.A. ROC analysis applied to the evaluation of medical imaging techniques. Invest. Radio!. 1979; 14: 109–121.CrossRefGoogle Scholar
  54. 9.54
    Swets J.A. Indices of discrimination or diagnostic accuracy: Their ROCs and implied models. Psycho!. Bull. 1986; 99: 100–117.CrossRefGoogle Scholar
  55. 9.55
    Swets J.A. Form of empirical ROCs in discrimination and diagnostic tasks: Implications for theory and measurement of performance. Psycho!. Bull. 1986; 99: 181–198.CrossRefGoogle Scholar
  56. 9.56
    Swets J.A., Pickett R.M. Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. New York: Academic; 1982.Google Scholar
  57. 9.57
    Metz C.E. Some practical issues of experimental design and data analysis in radiological ROC studies. Invest. Radio!. 1989; 24: 234–245.CrossRefGoogle Scholar
  58. 9.58
    Swets J.A. Is there a sensory threshold? Science 1961; 134: 168–177.CrossRefGoogle Scholar
  59. 9.59
    Dorfman D.D., Alf E. Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals-Rating method data. J. Math. Psycho!. 1969; 6: 487–496.CrossRefGoogle Scholar
  60. 9.60
    Yerushalmy J. The statistical assessment of the variability in observer perception. Radio!. Clin. N. Am. 1969; 7: 381–392.Google Scholar
  61. 9.61
    Revesz G., Kundel H.L., Bonitatibus M. The effect of verification on the assessment of imaging techniques. Invest. Radio!. 1983; 18: 194–198.CrossRefGoogle Scholar
  62. 9.62
    Ker M., Seeley G.W., Stempski M.O., Patton D. A protocol for verifying truth of diagnosis. Invest. Radiol. 1988; 23: 485–487.CrossRefGoogle Scholar
  63. 9.63
    Kundel H.L., Revesz G. The evaluation of radiographic techniques by observer tests: Problems, pitfalls, and procedures. Invest. Radio!. 1974; 9: 166–172.CrossRefGoogle Scholar
  64. 9.64
    Ransoholf D.F., Feinstein A.R. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N. Engl. J. Med. 1978; 299: 926–930.CrossRefGoogle Scholar
  65. 9.65
    Metz C.E., Kronman H.B. Statistical significance tests for binormal ROC curves. J. Math. Psycho!. 1980; 22: 218–243.MATHCrossRefGoogle Scholar
  66. 9.66
    Metz C.E., Wang P.-L., Kronman H.B. A new approach for testing the significance of differences between ROC curves measured from correlated data. In: Deconink F., ed. Information Processing in Medical Imaging. The Hague: Nijhoff; 1984: 432–445.CrossRefGoogle Scholar
  67. 9.67
    Metz C.E. Statistical analysis of ROC data in evaluating diagnostic performance. In: Herbert D., Myers R., eds. Multiple Regression Analysis: Applications in the Health Sciences. New York: American Institute of Physics; 1986: 365–384.Google Scholar
  68. 9.68
    Berbaum K.S., Franken E.A., Dorfman D.D., Barloon T.J., Ell S.R., Lu C.H., Smith W.L., Abu-Yousef M.M. Tentative diagnoses facilitate the detection of diverse lesions in chest radiographs. Invest Radio!. 1986; 21: 532–539.CrossRefGoogle Scholar
  69. 9.69
    Berbaum K.S., Franken E.A., Dorfman D.D., Barloon T.J. Influence of clinical history upon detection of nodules and other lesions. Invest. Radio!. 1988; 23: 48–55.CrossRefGoogle Scholar
  70. 9.70
    Hanley J.A. Alternative approaches to receiver operating characteristic analysis. Radiology 1988; 168: 568–570.Google Scholar
  71. 9.71
    Berbaum K.S., El Khoury G.E., Franken E.A., Kathol M.C., Montgomery W.J., Hesson W. The impact of clinical history on detection of fractures. Radiology 1988; 168: 507–511.Google Scholar
  72. 9.72
    Dorfman D.D. RSCORE II. In: Swets J.A., Pickett R.M., Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. New York: Academic; 1982: 212–232.Google Scholar
  73. 9.73
    Metz C.E. Some practical uses of experimental design and data analysis in radiographic ROC studies. Invest. Radio!. 1989; 24: 234–235.CrossRefGoogle Scholar
  74. 9.74
    Rey W.J.J. Introduction to Robust and Quasi-Robust Statistical Methods. New York: Springer; 1983.MATHCrossRefGoogle Scholar
  75. 9.75
    Arvesen J.N., Salsburg D.S. Approximate tests and confidence intervals using the jackknife. In: Elashoff R.M., ed. Perspectives in Biometrics. New York: Academic; 1975: 123–147.Google Scholar
  76. 9.76
    Tukey J.W. Bias and confidence in not quite large samples. Ann. Math. Stat. 1958; 29: 614. Abstract.Google Scholar
  77. 9.77
    Tukey J.W. Analyzing data: Sanctification or detective work ? Am. Psychol. 1969; 24: 83–91.CrossRefGoogle Scholar
  78. 9.78
    Winer B.J. Statistical Principles in Experimental Design. New York: McGraw-Hill; 1971.Google Scholar
  79. 9.79
    Dorfman D.D., Berbaum K.S. RSCORE-J: Pooled rating method data: A computer program for analyzing pooled ROC curves. Behay. Res. Methods Instrum. Comput. 1986; 18: 452–462.CrossRefGoogle Scholar
  80. 9.80
    Getty D.J., Pickett R.M., D’Orsi C.J., Swets J.A. Enhanced interpretation of diagnostic images. Invest. Radio!. 1988; 23: 240–252.CrossRefGoogle Scholar
  81. 9.81
    Berbaum K.S., Franken E.A., Dorfman D.D., Rooholamini S.A., Kathol M.H., Barloon T.J., Behlke F.M., Sato Y., Lu C.H., El-Khoury G.Y., Flickinger F.W., Montgomery W.J. Satisfaction of search in diagnostic radiology. Invest. Radio!. 1990; 25: 133–140.CrossRefGoogle Scholar
  82. 9.82
    Berbaum K.S., Franken E.A., Dorfman D.D., Rooholamini S., Coffman C.E., Cornell S.H., Cragg A.H., Galvin J.R., Honda H.H., Kao S.C.S., Kimball D.A., Ryals T.J., Sickels W.J., Smith A.P. Time course of satisfaction of search. Invest. Radiol. 1991; 26: 640–648.CrossRefGoogle Scholar
  83. 9.83
    Chakraboraty D.P., Winter L.H.L. Free response methodology: Alternative analysis and a new observer performance experiment. Radiology 1990; 174: 873–881.Google Scholar
  84. 9.84
    Bunch P.C., Hamilton J.F., Sanderson G.K., Simmons A.H. A free response approach to the measurement and characterization of radiographic observer performance. Proc. SPIE 1977; 127: 124–135.CrossRefGoogle Scholar
  85. 9.85
    Metz C.E., Starr S.J., Lusted L.B. Observer performance in detecting multiple radiographic signals. Radiology 1976; 121: 337–347.Google Scholar
  86. 9.86
    Starr S.J., Metz C.E., Lusted L.B., Goodenough D.J. Visual detection and localization of radiographic images. Radiology 1975; 116: 533–538.Google Scholar
  87. 9.87
    Swets J.A., Pickett R.M., Whitehead S.F., Getty D.J., Schnur J.A., Swets J.B.,Freeman B.A. Assessment of diagnostic technologies. Science 1979; 205: 753–759.CrossRefGoogle Scholar
  88. 9.88
    Berbaum K.S., Dorfman D.D., Franken E.A. Measuring observer performance by ROC analysis: Implications and complications. Invest. Radio!. 1989; 24: 228–233.CrossRefGoogle Scholar
  89. 9.89
    Turing A.M. On computable numbers, with an application to the Entscheidungs-problem. Proc. London Math. Soc. (Ser. 2) 1990; 42: 230–265.CrossRefGoogle Scholar
  90. 9.90
    Turing A.M. Computing machinery and intelligence. Mind 1950; 59: 433–460.MathSciNetCrossRefGoogle Scholar
  91. 9.91
    Von Neumann J. The general and logical theory of automata. In: Newman J.R.,ed. The World of Mathematics (Vol. 4 ). New York: Simon and Schuster; 1956: 2070–2098.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Kevin S. Berbaum
  • Mark Madsen
  • Donald D. Dorfman

There are no affiliations available

Personalised recommendations