Architecture and Ergonomics of Imaging Workstations

  • H. K. Huang
  • P. S. Cho

Abstract

An imaging workstation consists of four major components, namely, image processing hardware, display monitor, storage device, and a communication network. The image processing hardware is responsible for generating and transforming the pixel data for eventual visualization of the data on the display monitor. Different types of storage devices are used to meet the high capacity, high performance requirements of the imaging applications. These include Winchester disks, parallel transfer disks, and optical disks. The communication network is used for transmitting images in and out of the workstation.

Keywords

Optical Disk Host Computer Shadow Mask Display Monitor Frame Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 11.1
    Gelberg L.M., MacMann J.F., Mathias C.J. Graphics, image processing, and the Stellar Graphics Supercomputer. Proc. SPIE 1989; 1074: 89–95.CrossRefGoogle Scholar
  2. 11.2
    Steding T.L. A new-generation imaging platform with integrated pixel-polygon processing: The Titan graphics supercomputer. Proc. SPIE 1989; 1074: 42–45.CrossRefGoogle Scholar
  3. 11.3
    Glasford G.N. Fundamentals of Television Engineering. New York: McGraw-Hill; 1974: 64–74.Google Scholar
  4. 11.
    Sherr S. Fundamentals of Display System Design. New York: Wiley; 1970: 399411.Google Scholar
  5. 11.5
    Dietch L., Palac K., Chiodi W. Performance of high resolution flat tension mask color CRTs. SID Dig. 1986; 322–323.Google Scholar
  6. 11.6
    Awata Y., Sumiya H., Shibata Y., Umemura S. A new large sreen high resolution Trinitron color display monitor for computer graphics application. SID Dig. 1986; 459–462.Google Scholar
  7. 11.7
    Alford R.C. The evolution of ESDI. BYTE 1990; 15 (5): 297–306.Google Scholar
  8. 11.8
    Lyons H.N. Innovative technology breathes extended life into 8 inch Winchester. Comput. Tech. Rev. 1989; 9 (10): 43–45.Google Scholar
  9. 11.9
    Glass B.L. The SCSI bus. BYTE 1990; 15 (2): 267–298.Google Scholar
  10. 11.10
    Wright M. SCSI host-adapter boards meet the needs of Multibus and VME bus computer systems. Electron Dev. News 1986; 31 (21): 81–90.Google Scholar
  11. 11.
    Mooney J.M. The IPI standard: The peripheral answer to RISC. VMEbus Systems 1989; August: 51–60.Google Scholar
  12. 11.
    Bock M. Parallel disk systems multiply disk level performance. Comput. Tech. Rev. 1989 (Winter): 11–14.Google Scholar
  13. 11.13
    Tucker M.J. The light fantastic. SunExpert 1990; 1 (8): 53–70.Google Scholar
  14. 11.14
    Horii S.C., Horii H.N. An eclectic look at viewing station design. Proc. SPIE Med. Nag. II 1988; 914: 920–928.CrossRefGoogle Scholar
  15. 11.15
    Stammerjohn L.W., Smith M.J., Cohen B.G.F. Evaluation of workstation design factors in VDT operations. Hum. Fact. 1981; 23 (4): 401–412.Google Scholar
  16. 11.16
    Kaufman J.E., ed. IES Lighting Handbook ( 5th ed. ). New York: Illuminating Engineering Society; 1972: 1–9.Google Scholar
  17. 11.17
    Rancourt J., Grenawalt W. Approaches to enhancing VDT viewability and methods of assessing the improvements. Proc. SPIE 1986; 624: 8–13.CrossRefGoogle Scholar
  18. 11.18
    Grandjean E. Design of VDT workstation. In: Salvendy G., ed. Handbook of Human Factors. New York: Wiley; 1987: 1359–1397.Google Scholar
  19. 11.19
    Morse R.S. Glare filter preference: Influence of subjective and objective indices of glare, sharpness, brightness, contrast, and color. Proc. Hum. Fact. Soc. (29th Ann. Mtg.); 1985: 782–786.Google Scholar
  20. 11.20
    Cushman W.H. Illumination. In: Salvendy G., ed. Handbook of Human Factors. New York: Wiley; 1987: 670–695.Google Scholar
  21. 11.21
    van der Heiden G.H., Brauninger U., Grandjean E. Ergonomic studies on computer-aided design. In: Grandjean E., ed. Ergonomics and Health in Modern Offices. London: Taylor and Francis; 1984: 119–128.Google Scholar
  22. 11.22
    Arenson R.L., Chakrabortz D.P., Seshadri S.B., Kundel H.L. The digital imaging workstation. Radiology 1990; 176: 303–315.Google Scholar
  23. 11.23
    Dwyer S.J., Cox G.G., Cook L.T., McMillan J.H., Templeton A.W. Experience with high resolution digital gray scale display systems. Proc. SPIE 1990; 1234: 132–138.CrossRefGoogle Scholar
  24. 11.24
    Taira R.K., Simons M., Razavi M., Kangarloo H., Boechat M.I., Hall T., Chuang K.S., Huang H.K., Eldredge S. High resolution workstations for primary and secondary radiology readings. Proc. SPIE 1990; 1234: 18–25.CrossRefGoogle Scholar
  25. 11.25
    Arenson R.L., Seshadri S.B., Kundel H.L., DeSimone D., Van der Voorde F., Gefter W.B., Epstein D.M., Miller W.T., Aronchick J.M., Simon M.B., Lanken P.N., Khalsa S., Brikman I., Davey M., Brisbon N. Clinical evaluation of a medical image management system for chest images. Am. J. Roentg. 1988; 150: 55–59.Google Scholar
  26. 11.26
    Cho P.S., Huang H.K., Tillisch J., Kangarloo H. Clinical evaluation of a radiologic picture archiving and communication system for a coronary care unit. Am. J. Roentg. 1988; 151: 823–827.Google Scholar
  27. 11.
    Wilson A.C. Where are the 2k x 2k display controllers? ESD: The Electronic System Design Magazine 1988; August: 36–43.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. K. Huang
  • P. S. Cho

There are no affiliations available

Personalised recommendations