The Concept of Incipient Diabetic Nephropathy and Effect of Early Antihypertensive Intervention

  • Michel Marre
  • Patrick Fabbri
  • Gilles Berrut
  • Béatrice Bouhanick

Abstract

Diabetic nephropathy is the main cause for premature death among type 1, insulin-dependent diabetic subjects [1]. To date, aggressive antihypertensive treatment is the only intervention able to improve prognosis of these patients [2]. The term diabetic nephropathy designates glomerular injury attributable to diabetes [3]. As in all glomerular diseases, its diagnosis is based upon three functional abnormalities: proteinuria (mainly, albuminuria), elevated blood pressure, and reduced glomerular filtration rate. Technical improvements lead to early detection of glomerular dysfunction in type 1, insulin-dependent diabetic subjects: the first ones were sensitive assays for urinary albumin measurement [4,5]; also sensitive techniques to detect glomerular hyperfiltration early in the course of diabetic renal disease, and only recently automatic blood pressure monitoring to detect minimal blood pressure changes [6,7]. The concept of incipient diabetic nephropathy was validated by 4 follow-up studies of patients whose urinary albumin was measured serially with sensitive techniques [8–11]. These studies indicated that minimal increases in Urinary Albumin Excretion (UAE) (called microalbuminuria) can have a prognostic value. Therefore, the concept of incipient diabetic nephropathy is based upon the premise that persistent microalbuminuria can already indicate initial glomerular injury, and not only glomerular dysfunction.

Keywords

Diabetic Nephropathy Urinary Albumin Excretion Clinical Proteinuria Glomerular Dysfunction Persistent Microalbuminuria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 1983; 2: 496–501.Google Scholar
  2. 2.
    Mathiesen ER, Borch-Johnsen K, Jensen DV, Deckert T. Improved survival in patients with diabetic nephropathy. Diabetologia 1989; 32: 884–886.PubMedCrossRefGoogle Scholar
  3. 3.
    Deckert T, Poulsen JE, Larsen M. Prognosis of diabetics with diabetes onset before the age of thirty-one. I-survival, causes of death and complications. Diabetologia 1978; 14: 363–370.Google Scholar
  4. 4.
    Keen H, Chlouverakis C. An immunoassay method for urinary albumin at low concentrations. Lancet 1963; ii: 913.CrossRefGoogle Scholar
  5. 5.
    Miles DM, Mogensen CE, Gundersen HJG. Radioimmunoassay for urinary albumin using a single antibody. Scand J Clin Lab Invest 1970; 25: 5–11.CrossRefGoogle Scholar
  6. 6.
    Benhamou PY, Halimi S, De Gaudemaris R, Boizel R, Pitiot M, Siche JP, Bachelot I, Mallion JM. Early disturbances of ambulatory blood pressure in normotensive type 1 diabetic patients with microalbuminuria. Diabetes Care 1992; 15: 1614–1619.PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen KW, Mau Pedersen M, Marshall SM, Christiansen JS, Mogensen CE. Circadian variation of blood pressure in patients with diabetic nephropathy. Diabetologia 1992; 35: 1074–1079.PubMedCrossRefGoogle Scholar
  8. 8.
    Viberti RC, Hill RD, Jarret RJ, Argyropoulos A, Hahmud U, Keen M. Microalbuminuria as a predictor of clinical nephropathy in insulin dependent diabetes mellitus. Lancet 1982; i: 1430–1432.CrossRefGoogle Scholar
  9. 9.
    Parving H-H, Oxenbøll B, Svendsen PAA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 1982; 100: 550–555.Google Scholar
  10. 10.
    Mathiesen ER, Oxenbøll B, Johansen K, Svendsen PAA, Deckert T. Incipient nephropathy in type 1 (insulin-dependent) diabetes. Diabetologia 1984; 26: 406–410.PubMedCrossRefGoogle Scholar
  11. 11.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984; 311: 89–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Mogensen CE, Chachati A, Christensen CK, et al. Microalbuminuria: an early marker of renal involvement in diabetes. Uremia Invest 1985–86; 9: 85–95.PubMedGoogle Scholar
  13. 13.
    Feldt-Rasmussen B, Mathiesen ER, Jensen T, Lauritzen T, Deckert T. Effect of improved metabolic control on loss of kidney function in type i (insulin-dependent) diabetic patients: an update of the steno studies. Diabetologia 1991; 34: 164–170.PubMedCrossRefGoogle Scholar
  14. 14.
    Marre M, Chatellier G, Leblanc H, Guyenne TT, Menard J, Passa P. Prevention of diabetic nephropathy with enalapril in normotensive diabetics with microalbuminuria. BMJ 1988; 297: 1092–1095.PubMedCrossRefGoogle Scholar
  15. 15.
    Mathiesen ER, Hommel E, Giese J, Parving H-H. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ 1991; 303: 81–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Christensen CK, Krusell LR, Mogensen CE. Increased blood pressure in diabetes: essential hypertension or diabetic nephropathy? Scand J Clin Lab Invest 1987; 47: 363–370.PubMedCrossRefGoogle Scholar
  17. 17.
    Beirut G, Hallab M, Bouhanick B, Chameau AM, Marre M, Fressinaud PH. Value of ambulatory blood pressure monitoring in type 1 (insulin-dependent) diabetic patients with incipient diabetic nephropathy. Am J Hypertens 1994; 7: 222–227.CrossRefGoogle Scholar
  18. 18.
    Middeke M, Schrader J. Nocturnal blood pressure in normotensive subjects and those with while coat, primary, and secondary hypertension. BMJ 1994; 308: 630–632.PubMedCrossRefGoogle Scholar
  19. 19.
    Starling EH. Physiological factors involved in the causation of dropsy. Lancet 1896; i: 1405.Google Scholar
  20. 20.
    Mathiesen ER, Rønn B, Jensen T, Storm B, Deckert T. The relationship between blood pressure and urinary albumin excretion in the development of microalbuminuria. Diabetes 1990; 39: 245–249.PubMedCrossRefGoogle Scholar
  21. 21.
    Microalbuminuria Collaborative Study Group, United Kingdom. Risk factors for development of microalbuminuria in insulin-dependent diabetic patients: a cohort study. BMJ 1993; 306:1235–1239.CrossRefGoogle Scholar
  22. 22.
    Forsblom CM, Groop PH, Ekstrand A, Groop LC. Predictive value of microalbuminuria in insulin-dependent diabetes of long duration. BMJ 1992; 305: 1051–1053.PubMedCrossRefGoogle Scholar
  23. 23.
    Krolewski AS, Laffel LM, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the risk of microalbuminuria in patients with insulin-dependent diabetes mellitus. N Engl J Med 1995; 332: 1251–1255.PubMedCrossRefGoogle Scholar
  24. 24.
    The Diabetes Control And Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.CrossRefGoogle Scholar
  25. 25.
    Feldt-Rasmussen B, Mathiesen ER, Deckert T. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet 1986; ii: 1300–1304.CrossRefGoogle Scholar
  26. 26.
    Viberti GC, Mogensen CE, Groop LC, Pauls JF, for The European Microalbuminuria Study Group. Effect of Captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA 1994; 271: 275–279.PubMedCrossRefGoogle Scholar
  27. 27.
    Laffel LBM, McGill JB, Gans DJ, on behalf of The North American Microalbuminuria Study Group. The beneficial effect of angiotensin converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. Am J Med 1995; 99: 497–504.PubMedCrossRefGoogle Scholar
  28. 28.
    Mogensen CE, Østerby R, Hansen KW, Damsgaard EM. Blood pressure elevation versus abnormal albuminuria in the genesis and prediction of renal disease in diabetes. Diabetes Care 1992; 15: 1192–1204.PubMedCrossRefGoogle Scholar
  29. 29.
    Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. BMJ 1982; 285: 685–688.PubMedCrossRefGoogle Scholar
  30. 30.
    Parving H-H, Andersen AR, Smidt UM, Svendsen PAA. Early aggressive antihypertensive treatment reduces the rate of decline in kidney function in diabetic nephropathy. Lancet 1983; i: 1175–1179.CrossRefGoogle Scholar
  31. 31.
    Christensen CK, Mogensen CE. Effect of antihypertensive treatment on progression of incipient diabetic nephropathy. Hypertension 1985; 7: Suppl II: 109–113.Google Scholar
  32. 32.
    Brenner BM, Humes HD. Mechanisms of glomerular ultrafiltration. N Engl J Med 1977; 297: 148–154.PubMedCrossRefGoogle Scholar
  33. 33.
    Keeton T, Campbell WB. The pharmacological alterations of renin release. Pharmacol Rev 1980; 32: 81–227.PubMedGoogle Scholar
  34. 34.
    Zatz R, Meyer TW, Rennke HG, Brenner BM. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA 1985; 82: 5963–5967.PubMedCrossRefGoogle Scholar
  35. 35.
    Parving H-H, Jensen HA, Mogensen CE, Evrin PE. Increased urinary albumin excretion rate in benign essential hypertension. Lancet 1974; i: 1190–1192.CrossRefGoogle Scholar
  36. 36.
    Anderson S, Rennke HG, Garcia DL, Brenner BM. Short and long term effects of antihypertensive therapy in the diabetic rat. Kidney Int 1989; 36: 526–536.PubMedCrossRefGoogle Scholar
  37. 37.
    Hallab M, Gallois Y, Chatellier G, Rohmer V, Fressinaud PH, Marre M. Comparison of reduction in microalbuminuria by enalapril and hydrochlorothiazide in normotensive patients with insulin dependent diabetes. BMJ 1993; 306: 175–182.PubMedCrossRefGoogle Scholar
  38. 38.
    Mogensen CE. Prediction of clinical diabetic nephropathy in IDDM patients: alternatives to microalbuminuria? Diabetes 1990; 39: 761–767.PubMedCrossRefGoogle Scholar
  39. 39.
    Marre M, Claudel JP, Ciret P, Luis N, Suarez L, Passa P. Laser immunonephelometry for routine quantification of urinary albumin excretion. Clin Chem 1987; 33: 209–213.PubMedGoogle Scholar
  40. 40.
    Rudberg S, Aperia A, Freyschuss U, Persson B. Enalapril reduces microalbuminuria in young normotensive type 1 (insulin-dependent) diabetic patients irrespective of its hypotensive effect. Diabetologia 1990; 33: 470–476.PubMedCrossRefGoogle Scholar
  41. 41.
    Marre M, Hallab M, Billiard A, Le Jeune JJ, Bled F, Girault A, Fressinaud P. Small doses of ramipril to reduce microalbuminuria in diabetic patients with incipient nephropathy independently of blood pressure changes. J Cardiovasc Pharmacol 1991; 18: S165–S168.PubMedGoogle Scholar
  42. 42.
    Kasiske BL, Kalil RS, Ma JZ, Liao M, Keane WF. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993; 118: 129–138.PubMedCrossRefGoogle Scholar
  43. 43.
    Melbourne Diabetic Nephropathy Study Group. Comparison between perindopril and nifedipine in hypertensive and normotensive diabetic patients with microalbuminuria. BMJ 1991; 302: 210–216.CrossRefGoogle Scholar
  44. 44.
    Björk S, Mulec H, Johnsen SA, Nyberg G, Aurell M. Renal protective effect of enalapril in diabetic nephropathy. BMJ 1992; 304: 339–343.CrossRefGoogle Scholar
  45. 45.
    Lewis EJ, Hunsiker LG, Bain RP, Rohde RD, for The Collaborative Study Group. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–1462.PubMedCrossRefGoogle Scholar
  46. 46.
    The Microalbuminuria Captopril Study Group. Captopril reduces the risk of nephropathy in IDDM patients with microalbuminuria. Diabetologia 1996; 39: 587–593.CrossRefGoogle Scholar
  47. 47.
    Fabbri P, Bouhanick B, Freneau E, Vilayleck B, Berrut G, Fressinaud PH, Marre M. Comparison of two treatment strategies with angiotensin I converting enzyme inhibitors in normotensive IDDM patients with microalbuminuria (Abstract). DiabetesDiabetes 1995; 44: suppl. 1: 24A.Google Scholar
  48. 48.
    Erley CM, Haefele U, Heyne N, Braun N, Risler T. Microalbuminuria in essential hypertension; reduction by different antihypertensive drugs. Hypertension 1993; 21: 810–815.PubMedCrossRefGoogle Scholar
  49. 49.
    Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lenfant M, Corvol P, Menard J. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest 1996; 97: 839–844.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Ravid M, Savin H, Jutrin I, Bental T, Katz B, Lishner M. Long-term stabilizing effect of angiotensin converting enzyme inhibition on plasma creatinine and proteinuria in normotensive type II diabetic patients. Ann Intern Med 1993; 118: 577–581.PubMedCrossRefGoogle Scholar
  51. 51.
    Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensinconverting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med 1996; 156: 286–289.PubMedCrossRefGoogle Scholar
  52. 52.
    Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984; 310: 356–360.PubMedCrossRefGoogle Scholar
  53. 53.
    The Euclid Study Group. The effect of Lisinopril on albumin excretion rate in non-hypertensive insulin dependent diabetes (IDDM) patients (Abstract). Diabetologia 1996; 39: Suppl. 1: A42.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michel Marre
    • 1
  • Patrick Fabbri
    • 1
  • Gilles Berrut
    • 1
  • Béatrice Bouhanick
    • 1
  1. 1.Unité de Diabétologie, Service de Médecine BCentre Hospitalier UniversitaireAngersFrance

Personalised recommendations