The Kidney and Hypertension in Diabetes Mellitus pp 223-232 | Cite as
Pathogenesis of Diabetic Glomerulopathy: The Role of Glomerular Hemodynamic Factors
Abstract
Glomerular hyperfiltration in insulin-dependent (type 1) diabetes mellitus (IDDM) has been recognized for many years [1–3], with increments in renal plasma flow (RPF) and nephromegaly [3]. With the finding of hyperfiltration, Stalder and Schmid proposed that these early functional changes may predispose the subsequent development of diabetic glomerulopathy [1]. Early support for the hypothesis that renal hyperperfusion and hyperfiltration contribute to diabetic glomerulopathy emanated from the finding of diabetic glomerulopathy only in the non-stenosed kidney in the setting of unilateral renal artery stenosis [4].
Keywords
Atrial Natriuretic Peptide Experimental Diabetes Renal Plasma Flow Glomerular Hyperfiltration Tubuloglomerular FeedbackPreview
Unable to display preview. Download preview PDF.
References
- 1.Stalder G, Schmid R. Severe functional disorders of glomerular capillaries and renal hemodynamics in treated diabetes mellitus during childhood. Ann Paediatr 1959; 193: 129–138PubMedGoogle Scholar
- 2.Ditzel J, Junker K. Abnormal glomerular filtration rate, renal plasma flow and renal protein excretion in recent and short-term diabetes. BMJ 1972; 2: 13–19.PubMedCrossRefGoogle Scholar
- 3.Mogensen CE, Andersen MJF. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 1973; 22: 706–712.PubMedGoogle Scholar
- 4.Berkman J, Rifkin H. Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel Wilson). Metabolism 1973; 22: 715–722.PubMedCrossRefGoogle Scholar
- 5.Vora J, Dolben J, Dean J, Williams JD, Owens DR, Peters JR. Renal hemodynamics in newly presenting non-insulin-dependent diabetics. Kidney Int 1992; 41: 829–835.PubMedCrossRefGoogle Scholar
- 6.Myers BD, Nelson RG, Williams GW, et al. Glomerular function in Pima Indian with non-insulin-dependent diabetes mellitus of recent origin. J Clin Invest 1991; 88: 524–530.PubMedCrossRefGoogle Scholar
- 7.Palmisano JJ, Lebovitz HE. Renal function in Black Americans with type II diabetes. J Diabetic Complications 1989; 3: 40–44.CrossRefGoogle Scholar
- 8.Nelson RG, Beck GJ, Bennett PH, Knowler WC, Mitch WE, Myers BD. Changes in glomerular function with the onset of non-insulin-dependent diabetes in Pima Indians. Diabetologia 1993; 36: A27 (abstr).Google Scholar
- 9.Mogensen CE. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest 1986; 46: 201–206.PubMedCrossRefGoogle Scholar
- 10.Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy — an 8 year prospective study. Kidney Int 1992; 41: 822–828.PubMedCrossRefGoogle Scholar
- 11.Lervang H-H, Jensen S, Borchner-Mortensen J, Ditzel J. Early glomerular hyperfiltration and the development of late nephropathy in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1988; 31: 723–729.PubMedCrossRefGoogle Scholar
- 12.Messent J, Jones SL, Wiseman M, Viberti GC. Glomerular hyperfiltration and albuminuria: an 8 year prospective study. Diabetologia 1991; 34: suppl. 2: 3A (abstr).Google Scholar
- 13.Vora JP, Peters JR, Williams JD. Evolution of renal hemodynamics in non-insulindependent diabetics (NIDDMs): a 2 year study. J Am Soc Nephrol 1993; 4: 310 (abstr).Google Scholar
- 14.Anderson S. Antihypertensive therapy in experimental diabetes. J Am Soc Nephrol 1992; 3: suppl. 1: 586–590.Google Scholar
- 15.O’Donnell MP, Kasiske BL, Keane WF. Glomerular hemodynamics and structural alterations in experimental diabetes. FASEB J 1986; 2: 2339–2347.Google Scholar
- 16.Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 1981; 19: 410–415 .PubMedCrossRefGoogle Scholar
- 17.Reubi FC. Glomerular filtration rate, renal blood flow, and blood viscosity during and after diabetic coma. Circ Res 1953; 1: 410–413.PubMedCrossRefGoogle Scholar
- 18.Zatz R, Meyer TW, Rennke HG, Brenner BM. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci (USA) 1985; 82: 5963–5967.CrossRefGoogle Scholar
- 19.Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986; 77: 1925–1930.PubMedCrossRefGoogle Scholar
- 20.Seyer-Hansen K. Renal hypertrophy in experimental diabetes mellitus. Kidney Int 1983; 23: 643–646.PubMedCrossRefGoogle Scholar
- 21.Seyer-Hansen K, Hansen J, Gundersen HJG. Renal hypertrophy in experimental diabetes. A morphometric study. Diabetologia 1980; 18: 501–505.PubMedCrossRefGoogle Scholar
- 22.Steffes MW, Brown DM, Basgen JM, Mauer SM. Amelioration of mesangial volume and surface alterations following islet transplantation in diabetic rats. Diabetes 1980; 29: 509–515.PubMedGoogle Scholar
- 23.Mauer SM, Michael AF, Fish AJ, Brown DM. Spontaneous immunoglobulin and complement deposition in glomeruli of diabetic rats. Lab Invest 1972; 27: 488–494.PubMedGoogle Scholar
- 24.O’Donnell MP, Kasiske BL, Daniels FX, Keane WF. Effect of nephron loss on glomerular hemodynamics and morphology in diabetic rats. Diabetes 1986; 35: 1011–1015.PubMedCrossRefGoogle Scholar
- 25.Mauer SM, Steffes MW, Azar S, Sandberg SK, Brown DM. The effect of Goldblatt hypertension on development of the glomerular lesions of diabetes mellitus in the rat. Diabetes 1978; 27: 738–744.PubMedCrossRefGoogle Scholar
- 26.Christiansen JS, Gammelgaard J, Tronier B, Svendsen PA, Parving H-H. Kidney function and size in diabetics before and during initial insulin treatment. Kidney Int 1982; 21: 683–688.PubMedCrossRefGoogle Scholar
- 27.Parving H-H, Christiansen JS, Noer I, Tronier B, Mogensen CE. The effect of glucagon infusion on kidney function in short-term insulin-dependent juvenile diabetics. Diabetologia 1980; 19: 350–354.PubMedCrossRefGoogle Scholar
- 28.Christiansen JS, Gammelgaard J, Orskov H, Andersen AR, Telmer S, Parving H-H. Kidney function and size in normal subjects before and during growth hormone administration for one week. Eur J Clin Invest 1980; 11: 487–490.CrossRefGoogle Scholar
- 29.Vora J, Dolben J, Williams JD, Peters JR, Owens DR. Impact of initial treatment on renal function in newly-diagnosed Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 734–740.PubMedCrossRefGoogle Scholar
- 30.Stackhouse S, Miller PL, Park SK, Meyer TW. Reversal of glomerular hyperfiltration and renal hypertrophy by blood glucose normalization in diabetic rats. Diabetes 1990; 39: 989–995.PubMedCrossRefGoogle Scholar
- 31.Scholey JW, Meyer TW. Control of glomerular hypertension by insulin administration in diabetic rats. J Clin Invest 1989; 83: 1384–1389.PubMedCrossRefGoogle Scholar
- 32.Tucker BJ, Anderson CM, Thies RS, Collins RC, Blantz RC. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats. Kidney Int 1992; 42: 1160–1168.PubMedCrossRefGoogle Scholar
- 33.Sabbatini M, Sansone G, Uccello F, Giliberti A, Conte G, Andreucci VE. Early glycosylation products induce glomerular hyperfiltration in normal rats. Kidney Int 1992; 42: 875–881.PubMedCrossRefGoogle Scholar
- 34.Ortola FV, Ballermann BJ, Anderson S, Mendez RE, Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats. J Clin Invest 1987; 80: 670–674.PubMedCrossRefGoogle Scholar
- 35.Mattar AL, Ribeiro MO, Fujihara CK, Padilha RM, DeNucci G, Zatz R. Effects of acute and chronic nitric oxide blockade on renal function of diabetic rats. J Am Soc Nephrol 1993; 4: 799 (abstr).Google Scholar
- 36.Ballermann BJ, Skorecki KL, Brenner BM. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am J Physiol 1984; 247: F110–F116.Google Scholar
- 37.Wilkes BM, Kaplan R, Mento PF, Aynedjian H Macica CM, Schlondorff D, Bank N. Reduced glomerular thromboxane receptor sites and vasoconstrictor responses in diabetic rats. Kidney Int 1992; 41: 992–999.PubMedCrossRefGoogle Scholar
- 38.Christlieb AR. Renin, angiotensin and norepinephrine in alloxan diabetes. Diabetes 1974; 23: 962–970.PubMedGoogle Scholar
- 39.Blantz RC, Peterson OW, Gushwa L, Tucker BJ. Effect of modest hyperglycemia on tubuloglomerular feedback activity. Kidney Int 1982; 22: suppl. 12: S206–S212.Google Scholar
- 40.Zhang PL, Mackenzie HS, Troy JL, Brenner BM. Effects of an atrial natriuretic peptide receptor antagonist on glomerular hyperfiltration in diabetic rats. J Am Soc Nephrol 1994; in press.Google Scholar
- 41.Jensen PK, Steven K, Blaehr H, Christiansen JS, Parving H-H. Effects of indomethacin on glomerular hemodynamics in experimental diabetes. Kidney Int 1986; 29: 490–495.PubMedCrossRefGoogle Scholar
- 42.Mayfield RK, Margolius HS, Levine JH, Wohltmann HJ, Loadholt CB, Colwell JA. Urinary kallikrein excretion in insulin-dependent diabetes mellitus and its relationship to glycemic control. J Clin Endocrinol Metab 1984; 59: 278–286.PubMedCrossRefGoogle Scholar
- 43.Jaffa AA, Mayfield RK. Kinin: a mediator of diabetes-induced glomerular hyperfiltration. Diabetes 1993; 42: suppl.: 500 (abstr).Google Scholar
- 44.Goldfarb S, Ziyadeh FN, Kern EFO, Simmons DA. Effects of polyol-pathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes mellitus in rats. Diabetes 1991; 40: 465–471.PubMedCrossRefGoogle Scholar
- 45.Daniels BS, Hostetter TH. Aldose reductase inhibition and glomerular abnormalities in diabetic rats. Diabetes 1989; 38: 981–986.PubMedCrossRefGoogle Scholar
- 46.Anderson S, Brenner BM. The critical role of nephron mass and of intraglomerular pressure for initiation and progression of experimental hypertensive-renal disorders. In: Laragh JH, Brenner BM (eds). Hypertension: Pathophysiology, Diagnosis, and Management, 2nd ed. New York: Raven Press; 1994; in press.Google Scholar
- 47.Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1993; 264: H150–H156.Google Scholar
- 48.Buga GM, Gold ME, Fukuto JM, Ignarro LJ. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 1991; 17: 187–193.PubMedCrossRefGoogle Scholar
- 49.Ott MJ, Ballermann BJ. Shear stress augments glomerular endothelial cell PDGF mRNA expression and mitogen production. J Am Soc Nephrol 1992; 3: 476 (abstr).Google Scholar
- 50.Riser BL, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest 1992; 90: 1932–1943.PubMedCrossRefGoogle Scholar
- 51.Riser BL, Cortes P, Zhao X, Sastry KSS, Hassett Cl, Narins RG. Mesangial cell stretch stimulates the formation of transforming growth factor ß and extracellular matrix synthesis. J Am Soc Nephrol 1992; 3: 642 (abstr).Google Scholar
- 52.Akai Y, Burns KD, Homma T, Harris RC. Mechanical stretch/relaxation stimulates protein kinase C activity, calcium influx and proto-oncogene expression in cultured rat mesangial cells. J Am Soc Nephrol 1992; 3: 460 (abstr).Google Scholar
- 53.Kaname S, Miyajima Y, Kurokawa K, Ogata E, Uchida S. Hemodynamic shear stress activates latent forms of TGF-ß secreted by rat mesangial cells in culture. J Am Soc Nephrol 1991; 2: 439 (abstr).Google Scholar
- 54.Anderson S, Rennke HG, Garcia DL, Brenner BM. Short and long term effects of antihypertensive therapy in the diabetic rat. Kidney Int 1989; 36: 526–532.PubMedCrossRefGoogle Scholar
- 55.Anderson S, Rennke HG, Brenner BM. Nifedipine versus fosinopril in uninephrectomized diabetic rats. Kidney Int 1992; 41: 891–897.PubMedCrossRefGoogle Scholar
- 56.Cooper ME, Rumble JR, Allen TJ, et al. Antihypertensive therapy and experimental diabetic nephropathy. Kidney Int 1992; 41: 898–903.PubMedCrossRefGoogle Scholar
- 57.Fujihara C, Padilha RM, Zatz R. Glomerular abnormalities in long-term experimental diabetes. Diabetes 1992; 41: 286–293.PubMedCrossRefGoogle Scholar
- 58.Geiger H, Bahner U, Vaaben W, et al. Effects of angiotensin-converting enzyme inhibition in diabetic rats with reduced renal function. J Lab Clin Med 1992; 120: 861–867.PubMedGoogle Scholar
- 59.O’Brien R, Cooper ME, Jerums G, Doyle AE. The effects of perindopril and triple therapy in a normotensive model of diabetic nephropathy. Diabetes 1993; 42: 604–609.PubMedCrossRefGoogle Scholar
- 60.Brown SA, Walton CL, Crawford P, Bakris GL. Long-term effects of antihypertensive regimens on renal hemodynamics and proteinuria. Kidney Int 1993; 43: 1210–1218.PubMedCrossRefGoogle Scholar
- 61.Anderson S, Jung FF, Ingelfinger JR. Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biologic correlations. Am J Physiol 1993; 265: F477–F486.Google Scholar
- 62.Remuzzi A, Perico N, Amuchastegui CS, Malanchini B, Mazerska M, Battaglia C, Bertani C, Remuzzi G. Short- and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes. J Am Soc Nephrol 1993; 4: 40–49.PubMedGoogle Scholar
- 63.Kasiske BL, Kalil RSN, Ma JZ, Liao M, Keane WF. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 1993; 118: 129–138.PubMedCrossRefGoogle Scholar
- 64.Weidmann P, Boehlen LM, de Courten M, Ferrari P. Antihypertensive therapy in diabetic patients. J Human Hypertens 1922; 6: suppl. 2: S23-S36.Google Scholar
- 65.Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-convertingenzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–1462.PubMedCrossRefGoogle Scholar