Biochemical Aspects of Diabetic Nephropathy

  • Erwin D. Schleicher

Abstract

The dominant histological feature of diabetic nephropathy is the thickening of the glomerular basement membrane and expansion of the mesangial matrix [1–3]. The changes correlate strongly with the clinical onset of proteinuria, hypertension and kidney failure. Although more than 50 years have elapsed since Kimmelstiel and Wilson [4] described in diabetic glomeruli the distinctive periodic acid-schiff (PAS)-reactive nodular deposits, progress in elucidating the pathobiochemistry has been slow. Recent investigations with electron microscopic, immunochemical and biochemical methods have led to an improved understanding of the structure-function relationship of the glomerular filtration unit in normal and pathological conditions [5]

Keywords

Diabetic Nephropathy Heparan Sulfate Mesangial Cell Glomerular Basement Membrane Mesangial Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mauer SM, Ellis E, Bilous RW, Steffes MW. The pathology of diabetic nephropathy. In: Draznin B, Melmed S, LeRoith D (eds). Complications of Diabetes Mellitus. New York: Alan R Liss Inc.; 1989; pp. 95–101.Google Scholar
  2. 2.
    Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984; 74: 1143–1155.PubMedCrossRefGoogle Scholar
  3. 3.
    Østerby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving H-H. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36: 1064–1070.PubMedCrossRefGoogle Scholar
  4. 4.
    Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 1936; 12: 83–89.PubMedGoogle Scholar
  5. 5.
    Farquhar MG. The glomerular basement membrane: A selective macromolecular filter. In: Hay E (ed). Cell Biology of Extracellular Matrix, New York, London: Plenum Press; 1981; pp. 335–378.CrossRefGoogle Scholar
  6. 6.
    Kim Y, Kleppel M, Butkowski R, Mauer M, Wieslander J, Michael A. Differential expression of basement membrane collagen chains in diabetic nephropathy. Am J Pathol 1991; 138: 413–420.PubMedGoogle Scholar
  7. 7.
    Nerlich A, Schleicher E. Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions. Am J Pathol 1991; 139: 889–899.PubMedGoogle Scholar
  8. 8.
    Schleicher ED, Nerlich A, Sauer U, Wiest I, Specks U, Timpl R. Immunhistochemische Untersuchungen zur Verteilung Kollagen Typ VI bei diabetischer Nephropathie (abstract). Diabetes und Stoffwechsel 1993; 2: 185.Google Scholar
  9. 9.
    Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem 1989; 180: 487–503.PubMedCrossRefGoogle Scholar
  10. 10.
    Kallunki P, Tryggvason K. human basement membrane heparan sulfate proteoglycan core protein: A 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Cell Biol 1992; 116: 559–571.Google Scholar
  11. 11.
    Schleicher ED, Wagner EM, Olgemöller B, Nerlich AG, Gerbitz KD. Characterization and localization of basement membrane-associated heparan sulphate proteoglycan in human tissues. Lab Invest 1989; 61: 323–332.PubMedGoogle Scholar
  12. 12.
    Stow JL, Sawada H, Farquhar MG. Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Nat! Acad Sci USA 1985; 82: 3296–3300.PubMedCrossRefGoogle Scholar
  13. 13.
    van den Born J, van den Heuvel PWJ, Bakker MAH, Veerkamp JH, Assmann KJM, Berden JHM. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 1992; 41: 115–123.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor ß is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 1993; 90: 1814–1818.PubMedCrossRefGoogle Scholar
  15. 15.
    Ruoslahti E. Extracellular matrix in the regulation of cellular functions. In: Burger MM, Sordat B, Zinkernagel RM (eds). Cell to cell interaction. Basel: Karger; 1990; pp. 88–98.Google Scholar
  16. 16.
    d’Amore PA. Modes of FGF release in vivo and in vitro Cancer and Metastasis Reviews 1990; 9: 227–238.CrossRefGoogle Scholar
  17. 17.
    Wright TC, Casellot JJ, Diamond JR, Karnovsky MJ. Regulation of cellular proliferation by heparin and heparan sulfate. In: Lane DA, Lindahl U (eds). Heparin. London: Edward Arnold; 1989; pp. 295–316.Google Scholar
  18. 18.
    Steffes MW, Østerby R, Chavers B, Mauer, MS. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 1989; 38: 1077–1081.PubMedCrossRefGoogle Scholar
  19. 19.
    Østerby R, Gundersen HJG. Glomerular size and structure in diabetes mellitus: early abnormalities. Diabetologia 1975; 11: 225–259.PubMedCrossRefGoogle Scholar
  20. 20.
    Spiro RG. Pathogenesis of diabetic glomerulopathy: a biochemical view. In: Mogensen CE (ed). The Kidney and Hypertension in Diabetes Mellitus. Boston: Martinus Nijhoff Publishing; 1988; pp. 117–130.Google Scholar
  21. 21.
    Mohan PS, Carter WG, Spiro RG. Occurrence of type VI collagen in extracellular matrix of renal glomeruli and its increase in diabetes. Diabetes 1990; 39: 31–37.PubMedCrossRefGoogle Scholar
  22. 22.
    Shimomura H, Spiro RG. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes: decreased levels of heparan sulfate proteoglycan. Diabetes 1987; 36: 374–381.PubMedCrossRefGoogle Scholar
  23. 23.
    Parthasarathy N, Spiro RG. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 1982; 31: 738–741.PubMedCrossRefGoogle Scholar
  24. 24.
    Schleicher E, Wieland OH. Changes of human glomerular basement membrane in diabetes mellitus. Eur J Clin Chem Clin Biochem 1984; 22: 223–227.Google Scholar
  25. 25.
    Haneda M, Kilkkkawa R, Horide N, Togawa M, Koya D, Kajiwara N, Ooshima A, Shigeta Y. Glucose enhances type IV collagen production in cultured rat glomerular mesangial cells. Diabetologia 1991; 34: 198–200.PubMedCrossRefGoogle Scholar
  26. 26.
    Schaefer RM, Paczek L, Huang S, Teschner M, Schaefer L, Heidland A. Role of glomerular proteinases in the evolution of glomerulosclerosis. Eur J Clin Chem Clin Biochem 1992; 30: 641–646.PubMedGoogle Scholar
  27. 27.
    Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes 1992; 41: 1520–1527.PubMedCrossRefGoogle Scholar
  28. 28.
    Flyvbjerg A. Growth factors and diabetic complications. Diabetic Med 1990; 7: 387–390.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakamura T, Fukui M, Ebihara I, Osada S, Nakaoka I, Tomino Y, Koide H. mRNA Expression of growth factors in glomeruli from diabetic rats. Diabetes 1993; 42: 450–456.PubMedCrossRefGoogle Scholar
  30. 30.
    Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 1990; 346: 371–374.PubMedCrossRefGoogle Scholar
  31. 31.
    Kern TS, Engerman TL. Arrest of glomerulopathy in diabetic dogs by improved diabetic control. Diabetologia 1990; 21: 178–183.Google Scholar
  32. 32.
    Larkins RG, Dunlop ME. The link between hyperglycaemia and diabetic nephropathy. Diabetologia 1992; 35: 499–504.PubMedCrossRefGoogle Scholar
  33. 33.
    Ayo SH, Radnik RA, Glass IIWF, Garoni JA, Rampt ER, Appling DR, Kreisberg JI. Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am J Physiol 1990; 260: F185-F191.Google Scholar
  34. 34.
    Olgemöller B, Schwaabe S, Gerbitz KD, Schleicher ED. Elevated glucose decreases the content of a basement membrane associated proteoglycan in proliferating mesangial cells. Diabetologia 1992; 35: 183–186.PubMedCrossRefGoogle Scholar
  35. 35.
    Danne T, Spiro MJ, Spiro RG. Effect of high glucose on type IV collagen production by cultured glomerular epithelial, endothelial, and mesangial cells. Diabetes 1993; 42: 170–177.PubMedCrossRefGoogle Scholar
  36. 36.
    Wolf G, Sharma K, Chen Y, Ericksen M, Ziyadeh FN. High glucose-induced proliferation in mesangial cells is reserved by autocrine TGF-ß. Kidney Int 1992; 42: 647–656.PubMedCrossRefGoogle Scholar
  37. 37.
    McClain DA, Paterson AJ, Roos MD, Wei X, Kudlow JE. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Proc Natl Acad Sci USA 1992; 89: 8150–8154.PubMedCrossRefGoogle Scholar
  38. 38.
    Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JA. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cells. Am J Physiol 1991; 261: F571-F577.Google Scholar
  39. 39.
    Guzman NJ, Crews FT. Regulation of inositol transport by glucose and protein kinase C in mesangial cells. Kidney Int 1992; 42: 33–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Craven PA, DeRubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest 1989; 83: 1667–1675.PubMedCrossRefGoogle Scholar
  41. 41.
    Ledbetter SR, Copeland El, Noonan D, Vogeli G, Hassel JR. Altered steady-state in mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes 1990; 39: 196–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Brownlee M, Cerami A, Vlassara H. Advanced glucosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318: 1315–1321.PubMedCrossRefGoogle Scholar
  43. 43.
    Vogt BW, Schleicher ED, Wieland OH. ε-aminolysine bound glucose in human tissues obtained at autopsy: increase in diabetes mellitus. Diabetes 1982; 31: 1123–1127.PubMedCrossRefGoogle Scholar
  44. 44.
    Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Angew Chem Intern Ed Engl 1990; 29: 565–594.CrossRefGoogle Scholar
  45. 45.
    Vlassara H, Brownlee M, Cerami A. Noval macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J Exp Med 1986; 164: 1301–1309.PubMedCrossRefGoogle Scholar
  46. 46.
    Doi T, Vlassara H, Kirstein M, Yamada Y, Striker GE, Striker U. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci USA 1992; 89: 2873–2877.PubMedCrossRefGoogle Scholar
  47. 47.
    Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J, Schlöndorff D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 1993; 43: 853–864.PubMedCrossRefGoogle Scholar
  48. 48.
    Sell DR, Carlson EC, Monnier VM. Differential effects of type 2 (non-insulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane. Diabetologia 1993; 36: 936–941.PubMedCrossRefGoogle Scholar
  49. 49.
    Greene D. The pathogenesis and its prevention of diabetic neuropathy and nephropathy. Metabolism 1988; 37: suppl. 1: 25–29.CrossRefGoogle Scholar
  50. 50.
    Schmolke M, Schleicher E, Guder WG. Renal sorbitol, myo-inositol and glycerophosphorylcholine in streptozotocin-diabetic rats. Eur J Clin Chem Clin Biochem 1992; 30: 607–614.PubMedGoogle Scholar
  51. 51.
    Olgemöller B, Schwaabe S, Schleicher ED, Gerbitz KD. Competitive inhibition by glucose of myo-inositol incorporation into cultured porcine mesangial cells. Biophys Biochem Acta 1990; 1052: 47–52.CrossRefGoogle Scholar
  52. 52.
    Li W, Chan LS, Khatami M, Rockey JH: Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by sorbinil. Biochim Biophys Acta 1986; 857: 198–208.PubMedCrossRefGoogle Scholar
  53. 53.
    Olgemöller B, Schleicher E, Schwaabe S, Gerbitz KD. Upregulation of myo-inositol transport compensates for competitive inhibition by glucose. Diabetes 1993; 42: 1119–1125.PubMedCrossRefGoogle Scholar
  54. 54.
    Mc Caleb ML, Mc Kean ML, Hohman TC, Laver N, Robinson WG. Intervention with aldose reductase inhibitor, tolrestat, in renal and retinal lesions of streptozotocin diabetic rats. Diabetologia 1991; 34: 659–701.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Erwin D. Schleicher

There are no affiliations available

Personalised recommendations