Kleinian Groups and Hyperbolic Manifolds

  • Colin Maclachlan
  • Alan W. Reid
Part of the Graduate Texts in Mathematics book series (GTM, volume 219)

Abstract

As indicated in the Preface, this book is written for those with a reasonable knowledge of Kleinian groups and hyperbolic 3-manifolds, with the aim of extending their repertoire in this area to include the applications and implications of algebraic number theory to the study of these groups and manifolds.This chapter includes the main ideas and results on Kleinian groups and hyperbolic 3-manifolds, which will be used subsequently. There are no proofs in this chapter and we assume that the reader has at least a passing knowledge of some of the ideas expounded here. In the Further Reading at the the end of the chapter, references are given for all the results that appear here so that deficiencies in the presentation here may be remedied from these sources.

Keywords

Fundamental Domain Hyperbolic Manifold Kleinian Group Parabolic Element Ideal Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Anderson, J. (1999). Hyperbolic Geometry. Springer-Verlag, New York.MATHGoogle Scholar
  2. Beardon, A. (1983). The Geometry of Discrete Groups. Graduate Texts in Mathematics Vol. 91. Springer-Verlag, New York.Google Scholar
  3. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar
  4. Thurston, W. (1997). Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, NJ.Google Scholar
  5. Ratcliffe, J. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics Vol. 149. Springer-Verlag, New York.Google Scholar
  6. Vinberg, E., editor (1993a). Geometry II (I). Encyclopaedia of Mathematical Sciences Vol. 29. Springer-Verlag, Berlin.Google Scholar
  7. Matsuzaki, K. and Taniguchi, M. (1998). Hyperbolic Manifolds and Kleinian Groups. Oxford University Press, Oxford.MATHGoogle Scholar
  8. Thurston, W. (1997). Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, NJ.Google Scholar
  9. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar
  10. Vinberg, E., editor (1993a). Geometry II (I). Encyclopaedia of Mathematical Sciences Vol. 29. Springer-Verlag, Berlin.Google Scholar
  11. Ratcliffe, J. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics Vol. 149. Springer-Verlag, New York.Google Scholar
  12. Maskit, B. (1988). Kleinian Groups. Springer-Verlag, Berlin.MATHGoogle Scholar
  13. Harvey, W., editor (1977). Discrete Groups and Automorphic Functions. Academic Press, London.MATHGoogle Scholar
  14. Matsuzaki, K. and Taniguchi, M. (1998). Hyperbolic Manifolds and Kleinian Groups. Oxford University Press, Oxford.MATHGoogle Scholar
  15. Thurston, W. (1997). Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, NJ.Google Scholar
  16. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar
  17. Matsuzaki, K. and Taniguchi, M. (1998). Hyperbolic Manifolds and Kleinian Groups. Oxford University Press, Oxford.MATHGoogle Scholar
  18. Ratcliffe, J. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics Vol. 149. Springer-Verlag, New York.Google Scholar
  19. Elstrodt, J., Grunewald, F., and Mennicke, J. (1998). Groups Acting on Hyperbolic Space. Monographs in Mathematics. Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  20. Elstrodt, J., Grunewald, F., and Mennicke, J. (1998). Groups Acting on Hyperbolic Space. Monographs in Mathematics. Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  21. Vinberg, E., editor (1993b). Geometry II (II). Encyclopaedia of Mathematical Sciences Vol. 29. Springer-Verlag, Berlin.Google Scholar
  22. Ratcliffe, J. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics Vol. 149. Springer-Verlag, New York.Google Scholar
  23. Thurston, W. (1997). Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, NJ.Google Scholar
  24. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar
  25. Maskit, B. (1988). Kleinian Groups. Springer-Verlag, Berlin.MATHGoogle Scholar
  26. Epstein, D. and Petronio, C. (1994). An exposition of Poincaré’s theorem. Enseign. Math, 40: 113–170.MathSciNetMATHGoogle Scholar
  27. Gromov, M. (1981). Hyperbolic manifolds according to Thurston and Jorgensen. Sémin. Bourbaki, 554: 40–53.MathSciNetCrossRefGoogle Scholar
  28. Hempel, J. (1976). 3-Manifolds. Annals of Mathematics Studies Vol. 86. Princeton University Press, Princeton, NJ.Google Scholar
  29. Jaco, W. (1980). Lectures on Three-Manifold Topology. AMS Conference Series No. 43. American Mathematical Society, Providence, RI.Google Scholar
  30. Morgan, J. and Bass, H., editors (1984). The Smith Conjecture. Academic Press, Orlando, FL.MATHGoogle Scholar
  31. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar
  32. Benedetti, R. and Petronio, C. (1992). Lectures on Hyperbolic Geometry. Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  33. Dunbar, W. and Meyerhoff, G. (1994). Volumes of hyperbolic 3-orbifolds. Indiana J. Math, 43: 611–637.MathSciNetMATHCrossRefGoogle Scholar
  34. Neumann, W. and Reid, A. (1992a). Arithmetic of hyperbolic manifolds. In Topology ‘80 pages 273–310, Berlin. de Gruyter.Google Scholar
  35. Matsuzaki, K. and Taniguchi, M. (1998). Hyperbolic Manifolds and Kleinian Groups. Oxford University Press, Oxford.MATHGoogle Scholar
  36. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar
  37. Ratcliffe, J. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics Vol. 149. Springer-Verlag, New York.Google Scholar
  38. Benedetti, R. and Petronio, C. (1992). Lectures on Hyperbolic Geometry. Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  39. Matsuzaki, K. and Taniguchi, M. (1998). Hyperbolic Manifolds and Kleinian Groups. Oxford University Press, Oxford.MATHGoogle Scholar
  40. Weil, A. (1960). On discrete subgroups of Lie groups. Annals of Math, 72: 369–384.MathSciNetCrossRefGoogle Scholar
  41. Garland, H. (1966). On deformations of discrete groups in the noncompact case. In Algebraic Groups and Discontinuous Subgroups, pages 405–412, Providence, RI. American Mathematical Society.CrossRefGoogle Scholar
  42. Mumford, D. (1976). Algebraic Geometry I. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin.MATHGoogle Scholar
  43. Mostow, G. (1973). Strong Rigidity of Locally Symmetric Spaces. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ.Google Scholar
  44. Prasad, G. (1973). Strong rigidity of Q-rank 1 lattices. Invent. Math, 21: 255–286.MathSciNetMATHCrossRefGoogle Scholar
  45. Vinberg, E., editor (1993a). Geometry II (I). Encyclopaedia of Mathematical Sciences Vol. 29. Springer-Verlag, Berlin.Google Scholar
  46. Ratcliffe, J. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics Vol. 149. Springer-Verlag, New York.Google Scholar
  47. Thurston, W. (1979). The geometry and topology of three-manifolds. Notes from Princeton University.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Colin Maclachlan
    • 1
  • Alan W. Reid
    • 2
  1. 1.Department of Mathematical Sciences, Kings CollegeUniversity of AberdeenAberdeenUK
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations