Renal Tubular Acidosis

  • Bruce Kaplan
  • Daniel Batlle

Abstract

The kidney has as one of its major responsibilities the excretion of the daily nonvolatile acid load. On a normal American diet, this amounts to about 1 mEq of nonvolatile acid per kilogram body weight. This acid is excreted in the form of titratable acids (e.g., H2PO4 ) and ammonium (NH4 +). Alkali is usually excreted in much smaller amounts in the form of bicarbonate and organic anions (citrate, etc.). Renal net acid excretion thus equals the sum of the excretion of ammonium plus titratable acid minus bicarbonate and other anions.

Keywords

Renal Tubular Acidosis Ammonium Excretion Distal Nephron Urinary Acidification Distal Renal Tubular Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batlle DC, Kurtzman NA: Distal renal tubular acidosis: Pathogenesis and classification. Am J Kidney Dis 1: 328–244, 1982.PubMedGoogle Scholar
  2. 2.
    Kurtzman NA: Renal tubular acidosis: a constellation of syndromes. Hosp Pract 173–188, 1987.Google Scholar
  3. 3.
    Undenlying Defects in Distal Renal Tubular Acidosis: New Understandings. Batlle D and Flores G. Am J Kid Dis 27: 896–915, 1996.CrossRefGoogle Scholar
  4. 4.
    Batlle DC: Renal tubular acidosis. In: Seldin, Giebisch, eds, The Regulation of Acid-Base Balance. Raven Press, New York, pp. 353–390, 1989.Google Scholar
  5. 5.
    Sebastian A, McSherry E, Morris RC Jr: In: BM Brenner, FC Rector Jr, eds, The Kidney. W.B. Saunders, Philadelphia, chapter 16, 1976.Google Scholar
  6. 6.
    Batlle DC, Chan YL: Effect of L-arginine on renal tubular bicarbonate reabsorption by the rat kidnev. Miner Electrolyte Metab 15: 187–194, 1989.PubMedGoogle Scholar
  7. 7.
    Morris RC Jr, Sebastian A: Renal tubular acidosis and the Fanconi syndrome. In: JB Stanbury, JB Wyngaarden, DS Frederickson, et a!., eds. The Metabolic Basis of Inherited Disease, 5th ed. McGraw-Hill, New York, 1983.Google Scholar
  8. 8.
    Brenes LG, Brenes JN, Hernandez MM: Familial proximal renal tubular acidosis. Arn J Med 63: 244–252, 1977.CrossRefGoogle Scholar
  9. 9.
    Preisig PA, Ives HE, Cragoe EJ, Alpern RF, Rector FC: Role of the Na/H antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 80: 970–978, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Coor C, Salmon RF, Quigley R, et al.: Role of adenosine triphosphate (ATP) and Na/K/ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J Clin Invest 87: 955–961, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    AI-Bander HA, Weiss RA, Humphrey MH, Morris RC Jr: Dysfunction of the proximal tubule underlies maleic acid-induced type II renal tubular acidosis. Am J Physiol 243:F604- F611, 1982.Google Scholar
  12. 12.
    Kramer HJ, Gonick HC: Experimental Fanconi syndrome. Effect of maleic acid on renal cortical Na/K/ATPase activity and ATP levels. J Lab Clin Med 76: 799–808, 1970.PubMedGoogle Scholar
  13. 13.
    Kleinman TG, Levin ML: Effects of 4-Pentenoic acid on renal free water, bicarbonate and phosphate excretion. Clin Sei 49:409–117, 1975.Google Scholar
  14. 14.
    Alpern RJ, Stone DK, Rector FC: Renal acidification mechanisms. In: BM Bremer, FC Rector Jr, eds, The Kidney. W.B. Saunders, Philadelphia, pp. 318–379, 1991.Google Scholar
  15. 15.
    Sly WS, Whyte MP, Sundaram V, et al.: Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med 313: 139, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Shapira E, Gen-Yoseph FGE, Russel A: Enzymatically inactive red cell carbonic anhydrase in a family with renal tubular acidosis. J Clin Invest 82: 59–63, 1974.CrossRefGoogle Scholar
  17. 17.
    Maldonado JE, Velosa JA, Kyle RA, et al.: Fanconi syndrome in adults: a manifestation of a latent form of myeloma. Am J Med 58: 354, 1975.PubMedCrossRefGoogle Scholar
  18. 18.
    Roth KS, Foreman JW, Segal S: The Fanconi syndrome and mechanisms of tubular transport dysfunction. Kidney Int 20: 705, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    McSherry E, Morris RC Jr: Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest 61: 509, 1978.PubMedCrossRefGoogle Scholar
  20. 20.
    Preminger GM, Sakhace K, Skurla C. Pak CYC: Prevention of renal calcium stone formation with potassium citrateGoogle Scholar
  21. 21.
    Brenner RJ, Spring DB, Sebastian A, et al.: Incidence of ra-diographically evident bone disease, nephrocalcinosis and nephrolithiasis in various types of renal tubular acidosis. N Engl J Med m-211,1982.Google Scholar
  22. 22.
    Gluck S, Al-Awqati Q: An electrogenic proton-translocating adenosine triphosphatase from bovine kidney medulla. J Clin Invest 73: 1704–1710, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Stone DS, Seldin DW, Kokko JP, et al.: Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent acidification. J Clin Invest 72: 77–83, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Lombard WE, Kokko JP, Jacobson HR: Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol 244: F289 - F296, 1983.PubMedGoogle Scholar
  25. 25.
    Laski ME, Kurtzman NA: Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J Clin Invest 72: 2050–2059, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Doucet A, Marsy S: Characterization of K/ATPase activity in distal nephorn: stimulation by potassium depletion. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F418–F423Google Scholar
  27. 27.
    Wingo CS, Straub SC: Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. J Clin Invest 84: 361–365, 1989.PubMedCrossRefGoogle Scholar
  28. 28.
    Garg LC: Respective roles of H/ATPase and H/K/ATPase in ion transport in the kidney. J Am Soc Nephrol 2: 949, 1991.PubMedGoogle Scholar
  29. 29.
    Mujais SK, Alsheika MW, Chen Y, Gutterman C, Batlle DC: Profile of H/K/ATPase along the collecting duct: Effect of K depletion (abstract). J Am Soc Nephrol 1991.Google Scholar
  30. 30.
    Sebastian A, McSherry E, Morris RC Jr: Renal potassium wasting in renal tubular acidosis (RTA). J Clin Invest 50: 667, 1971.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinmetz PR, Lawson LR: Defect in acidification induced in vitro by amphotericin B. J Clin Invest 49: 596–601, 1970.PubMedCrossRefGoogle Scholar
  32. 32.
    Dafnis E, Spohn M, Lonis B, et al.: Vanadate causes hypokalemic distal renal tubular acidosis. Am J Physiol 262: F449, 1992.PubMedGoogle Scholar
  33. 33.
    Caruana RJ, Buckalew VM Jr: The syndrome of distal (Type I) renal tubular acidosis. Medicine (Baltimore) 67: 84, 1988.Google Scholar
  34. 34.
    Batlle DC, Moses MF, Maniligod J, Arruda JAL, Kurtzman NA: The pathogenesis of hyperchloremic metabolic acidosis associated with renal transplantation. Am J Med 70: 786–796, 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Batlle DC, Sabatini S, Kurtzman NA: On the mechanism of toluene-induced renal tubular acidosis. Nephron 4:210–218Google Scholar
  36. 36.
    Taher SM, Anderson RJ, McCartney R, Popovtzer MM, Schrier RW: Renal tubular acidosis associated with toluene sniffing. N Engl J Med 290: 765–768, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Carlisle EJF, Donnelly SM, Vasuvattakul S, et al.: Glue-sniffing and distal renal tubular acidosis: Sticking to the facts. J Am Soc Nephrol 1: 1019, 1991.PubMedGoogle Scholar
  38. 38.
    Batlle DC, Keilani T: Classification and characterization of distal acidification defects in humans. In: M Hataho, ed, Nephrology. Springer-Verlag, pp 1196–1208, 1991.Google Scholar
  39. 39.
    Nilwarangkur S, Nimmannit S, Chaoyakul V, Susaengrat W, Ong–aj–yooth S, Vasuvattakul S, Pidetcha P, Malasit P: Endemic primary distal renal tubular acidosis in Thailand. Q J Med 74:275–289–301,1989.Google Scholar
  40. 40.
    Rodriguez-Soriano J, Vallo A, Castillo G, et al.: Natural his-torv of primary distal renal tubular acidosis treated since infancy./Pediatr 101: 669–676, 1982.Google Scholar
  41. 41.
    Batlle DC. Gavira M, Grupp M: Distal nephron function in patients receiving chronic lithium therapy. Kidney Int 21:477— 485, 1982.Google Scholar
  42. 42.
    Batlle DC, Grupp M, Gavira M, et al.: Distal renal tubular acidosis with intact ability to lower urine pH. Am J Med 72: 751–758, 1982.PubMedCrossRefGoogle Scholar
  43. 43.
    Sebastian A, Schambelan M, Linderfeld S, Morris RC: Amelioration of metabolic acidosis with fludrocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med 297: 576, 1977.PubMedCrossRefGoogle Scholar
  44. 44.
    Battle DC, Arruda JAL, Kurtzman NA: Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304: 373, 1981.CrossRefGoogle Scholar
  45. 45.
    Schambelan M, Sebastian A, Rector FC: Mineralcorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): role of increased renal chloride reabsorption. Kidney Int 19: 716, 1981.PubMedCrossRefGoogle Scholar
  46. 46.
    Battle DC: Sodium-dependent urinary acidification in patients with aldosterone deficiency and adrenalectomized rats. Metabolism 35: 852–860, 1986.CrossRefGoogle Scholar
  47. 47.
    Batlle DC, vonRiotte A, Schlueter W: Urinary sodium in the evaluation of hyperchloremic metabolic acidosis. N Engl J Med 316: 140, 1987.PubMedCrossRefGoogle Scholar
  48. 48.
    Batlle DC: Segmental characterization of defects in collecting tubule acidification. Kidney Int 30: 545, 1986.CrossRefGoogle Scholar
  49. 49.
    Schlueter W, Keilani T, Hizon M, Kaplan B. Batlle DC: On the mechanism of impaired distal acidification in hyperkalemic renal tubular acidosis: evaluation with amiloride and bumetanide. J Am Soc Nephrol 3: 953, 1992.PubMedGoogle Scholar
  50. 50.
    Batlle DC, Hizon M, Cohen E, et al.: The use of the urine anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 318: 594, 1988.PubMedCrossRefGoogle Scholar
  51. 51.
    Szylman P, Better OS, Chaimowitz C, Rosier A: Role of hyperkalemia in the metabolic acidosis of isolated hypoaldosteronism. N Engl J Med 294: 361, 1976.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Kelly R, Magee F, McKenna TJ: Routine heparin therapy inhibits adrenal aldosterone production. J Clin Endocrinol Metab 56: 108, 1983.PubMedCrossRefGoogle Scholar
  53. 53.
    Good DW: Effect of potassium on ammonium transport by medullary thick ascending limb of the rat. J Clin Invest 80: 1358–1365, 1987.PubMedCrossRefGoogle Scholar
  54. 54.
    Hulter HM, Ilnicki LP, Harbottle JA, Sebastian A: Impaired renal H secretion and NHj production in mineralocorticoid-deficient, glucorticoid-replete dogs. Am J Physiol 232: F136, 1977.PubMedGoogle Scholar
  55. 55.
    Cho MJ, Fernandez PC, Putnask A, et at.: Brief report: trimethoprim induced hyperkalemia in a patient with AIDS. N Engl J Med 328: 107–108, 1993.Google Scholar
  56. 56.
    Kleyman TR, Roberts C, Ling BN: A mechanism for pentamidine-induced hyperkalemia: inhibition of distal nephron sodium transport. Ann Intern Med 122: 103–106, 1995.PubMedCrossRefGoogle Scholar
  57. 57.
    Schlanger LE, Kleyman TR, Ling BN: K+ sparing diuretic actions of trimetroprim: inhibitors of Na* channels in AG distal nephron cells. Kidney Int 45: 1070–1076, 1994.PubMedCrossRefGoogle Scholar
  58. 58.
    Velazquez H, Ellison DH: Letter. Ann Intern Med 120:438, 1994Google Scholar
  59. 59.
    Arruda JAL, Subbarayudu K, Dytko G, et al.: Voltage dependent distal acidification defect induced by amiloride. J Lab Clin Med 95: 407–416, 1980.PubMedGoogle Scholar
  60. 60.
    Purcell H, Bastani B, Harris KPG, et al.: Cellular distribution of II“ ATPase following acute unilateral obstruction in rats. Am J Physiol 26LF363–F376,1991.Google Scholar
  61. 61.
    Arruda JAL, Dytko G, Mola R, et al.: On the mechanism of lithium induced distal renal tubular acidosis: studies in turtle bladder. Kidney Int 17: 196–204, 1980.PubMedCrossRefGoogle Scholar
  62. 62.
    Adu D, Michael J, Turney TM, McMaster P: Hyperkalemia in cyclosporine-treated renal allograft recipients. Lancet 2: 370–372, 1983.PubMedCrossRefGoogle Scholar
  63. 63.
    Batlle DC Gutterman C, Tarka J, Prsad R: Effect of cyclosporine A administration on urinary acidification. Clin Nephrol 25: S62 - S65, 1986.PubMedGoogle Scholar
  64. 64.
    Tumlin JA, Sanda JM: Nephron segment-specific inhibition of Na+/K+ATPase activity by cyclosporin A. Kidney Int 43: 246, 1993.PubMedCrossRefGoogle Scholar
  65. 65.
    Ling BN, Eaton DC: Cyclosporin A inhibits apical secretory K+ channels in rabbit cortical collecting tubules principal cells. Kidney Int 44: 974–984, 1993.PubMedCrossRefGoogle Scholar
  66. 66.
    Sebastian A, Schambelan M: Amelioration of type 4 renal tubular acidosis in chronic renal failure with furosemide. Kidney Int 12: 534, 1977.Google Scholar
  67. 67.
    Gordon RD: Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 8: 93, 1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Oster JR, Hotchkiss JL, Corbon M, Farmer M, Vaumosole C: A short duration renal Ca2“ acidification test using calcium chloride. Nephron 14: 281–292, 1975.CrossRefGoogle Scholar
  69. 69.
    Halperin ML, Goldstein MB, Haig A, et al.: Studies on the pathogenesis of Type I (distal) renal tubular acidosis as revealed by the urinary PCO, tensions. J Clin Invest 53: 669–677, 1974.PubMedCrossRefGoogle Scholar
  70. 70.
    Arruda JAL, Nascimento L, Kumer S, et al.: Factors influencing the formation of urinary carbon dioxide tension. Kidney Int 1: 307–317, 1977.CrossRefGoogle Scholar
  71. 71.
    DuBose TD Jr, Caflisch CR: Validation of the difference in urine and blood CO, tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest 75: 1116–1123, 1985.PubMedCrossRefGoogle Scholar
  72. 72.
    ArrudA JAL, Kurtzman NA: Mechanisms and classification of deranged distal urinary acidification. Am J Physiol 8:F515- F523,1980.Google Scholar
  73. 73.
    Garg LC: Lack of effect of amphotericin B on urine-blood PCO, gradient in spite of urinary acidification defect. Pflugers Arc/!~381:137–142, 1979.Google Scholar
  74. 74.
    Batlle DC, Sehy JT, Roseman NK, et al.: Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney Int 20: 389–396, 1981.PubMedCrossRefGoogle Scholar
  75. 75.
    Stinebaugh BJ, Schloeder FX, Gharafry E, Suki, WN, Goldstein MB, Halperin ML: Mechanism by which neutral phosphate infusion elevates urine PC02. J Lab Clin Med 89: 946–958, 1977.PubMedGoogle Scholar
  76. 76.
    Vallo A, Rodriguez-Soriano J: Oral phosphate-loading test for the assessment of distal urinary acidification in children. Miner Electrolyte Metab 10:387–390,’l984.Google Scholar
  77. 77.
    Cohen EP, Bastani B, Cohen MR, et al.: Absence of renal H*ATPase in cortical collecting tubules of a patient with Sjogren’s syndrome and distal renal tubular acidosis. J Am Soc Nephrol 3: 264–271. 1992.PubMedGoogle Scholar
  78. 78.
    Bastani B, Chu N. Yang L, Gluk S: Presence of intercalated cell H+ATPase in two lupus nephritis patients with distal renal tubular acidosis and auto-antibody to kidney peptide (abstract)./Am Soc Nephrol 3: 293, 1993.Google Scholar
  79. 79.
    Konishi K, Hayashi M, Soruta T: Renal tubular acidosis with auto-antibody directed to renal collecting-duct cells. N Engl J Med 331: 23, 1593–1594, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Bruce Kaplan
    • 1
  • Daniel Batlle
    • 2
  1. 1.Fexas Health Science Centr & Housth Division of Benal Disease and Hypertension 6431 Faxnin M5B 4.148.The UniversityHousthUSA
  2. 2.Division of Nephrology and HypertensionNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations