Advertisement

Abstract

Problems in the strength of structural materials in a variable temperature field are attracting more and more attention from engineers, as well as from investigators working in the most diverse branches of technology. A number of reviews [1–3] have appeared recently and are used in the present paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Manson, S., and Mach, S., Design 30(1958); No. 12-Appraisal of Brittle Materials; No. 13-Quantitative Techniques for Brittle Materials; No. 16-Basic Concepts of Fatigue in Ductile Materials; No. 17-Causes of Fatigue in Ductile Materials.Google Scholar
  2. 2.
    Serensen, S. V., and Kotov, P. I., Zavodsk. Lab. (9):1097 (1958).Google Scholar
  3. 3.
    Balandin, Yu. F., in: Metal Working, 3, Leningrad, Sudpromgiz, 1960.Google Scholar
  4. 4.
    Zalesskii, V. I., and Korneev, D. M., in: Production and Treatment of Steel, 32, Moscow Stal Institute, 1954, p. 237.Google Scholar
  5. 5.
    Fomin, S. F., Stal’ (8):743 (1955).Google Scholar
  6. 6.
    Kostenko, D. I., Avtomob. i. Trakt. Prom. (8):29 (1957).Google Scholar
  7. 7.
    Holmberg, M., Trans. ASME 73(6):733 (1951).Google Scholar
  8. 8.
    Thielsch, H., Weld., Res. Council Bull. Ser. (10):April (1952).Google Scholar
  9. 9.
    Ratner, A. V., Izv. Vses. Teplotekhn. Inst. (10):12 (1948).Google Scholar
  10. 10.
    Khimushin, F. F., Heat Resistant Steels for Airplane Engines, Moscow, Oborongiz, 1942.Google Scholar
  11. 11.
    Prishchepa, M. P., Thermal Fatigue of Steels. Resume of Candidate’s Dissertation, Tomsk, 1945.Google Scholar
  12. 12.
    Bochvar, A. A., and Novik, T. K., Dokl. Akad. Nauk SSSR 112(6):1041 (1957).Google Scholar
  13. 13.
    Sklyarov, N. M., et al., Zavodsk. Lab. (8):954 (1957).Google Scholar
  14. 14.
    Coffin, L., and Wesley, R., Trans. ASME 76(6):923 (1954).Google Scholar
  15. 15.
    ; Serensen, S. V., and Kotov, P. I., Zavodsk. Lab. (10):1216 (1959).Google Scholar
  16. 16.
    Kuznetsov, V. N., Teploénerg. (12):32 (1957).Google Scholar
  17. 17.
    Coffin, L., Proc. of Sagamore Conference, 1957.Google Scholar
  18. 18.
    Johansson, A., Colloquium on Fatigue, Berlin, 1956.Google Scholar
  19. 19.
    Baldwin, E., Sokol, G., and Coffin, L., Proc. ASTM 57:567 (1957).Google Scholar
  20. 20.
    Kennedy, C., Proc. Sagamore Conference, 1957.Google Scholar
  21. 21.
    Clauss, F., and Freeman, J., Thermal Fatigue of Ductile Metals, Part I, NACA Tech. Rept. 4160, Sept. 1958,Google Scholar
  22. 22.
    Kats, A. M., Theory of Elasticity, Moscow, Gostekhizdat, 1956.Google Scholar
  23. 23.
    Coffin, L., Trans. ASME 79(7):1637 (1957).Google Scholar
  24. 24.
    Glikman, L. A., Zhur. Tekhn. Fiz. 7(3):294 (1937).Google Scholar
  25. 25.
    Rädeker, W., Stahl u. Eisen 75(19):1252 (1955).Google Scholar
  26. 26.
    Liquid Metal Coolants (Sodium and Sodium — Potassium Alloy). Translation from English, edited by L. E. Sheidlin, Moscow, IL, 1958.Google Scholar
  27. 27.
    Holmberg, M., Welding J. 28(2):141 (1949).Google Scholar
  28. 28.
    Kostenko, D. I., Avtomob. i. Trakt. Prom.(26):30 (1957).Google Scholar
  29. 29.
    Muscatell, F., Reynolds, E., Dyrkacz, W., and Dolheim, J., Proc. ASTM 57:947 (1957).Google Scholar
  30. 30.
    Coffin, L., ASME, 1956, paper 56-A-178.Google Scholar
  31. 31.
    Coffin, L., Trans. ASME 78(3): 527 (1956).Google Scholar
  32. 32.
    Griboedova, T. S., Metalloved. i Term. Obrabotka Metal (6):55 (1959).Google Scholar
  33. 33.
    Serensen, S. V., and Kozlov, L. A., Zavodsk. Lab. (11):1378 (1958).Google Scholar
  34. 34.
    Vitman, F. F., and Zlatin, N. A., Zhur. Tekhn. Fiz. 19:315 (1949).Google Scholar
  35. 35.
    Vitman, F. F., and Zlatin, N. A., Zhur. Tekhn. Fiz. 20:1267 (1950).Google Scholar
  36. 36.
    Nadai, A., and Manjoine, M., J. Appl. Mech. 8:A77 (1941).Google Scholar
  37. 37.
    Stepanov, V. M., Tr. LKVVIA (257):3 (1958).Google Scholar
  38. 38.
    Hunter, T., Symposium on Metallic Materials for Service at Temperatures Above 1600°F., June 1955, p. 164.Google Scholar
  39. 39.
    Haythorne, P., Iron Age, September, 89 (1948).Google Scholar
  40. 40.
    Pridantsev, M. V., and Krylova, A. R., Zavodsk. Lab. 24(2):204 (1958).Google Scholar
  41. 41.
    Maurer, E., and Haufe, W., Stahl u. Eisen 44 (51) (1924).Google Scholar
  42. 42.
    Lardge, H., Symposium on Metallic Materials for Service at Temperatures Above 1600°F, June 1955, p. 146.Google Scholar
  43. 43.
    Rädeker, W., Stahl u Eisen 74(15):929 (1954).Google Scholar
  44. 44.
    Masyutin, E. V., Increasing the Heat Resistance of Aircraft Alloys by Chemical and Heat Treatment. Resume of Candidate’s Dissertation, LKVVIA, 1953.Google Scholar
  45. 45.
    Cranby, P., Metal Progr. 68(5):25 (1955).Google Scholar
  46. 46.
    Haufe, W., Stahl u. Eisen 47(33):1365 (1927).Google Scholar
  47. 47.
    Scherer, R., Stahl u Eisen 47 (48):2035 (1927).Google Scholar
  48. 48.
    Kishkin, S. T., and Klypin, A. A., Metalloved. i Term. Obrabotka Metal. (5):15 (1959).Google Scholar
  49. 49.
    Kurganov, G. V., and Sutina, Yu. A., Metalloved. i Term. Obrabotka Metal. (10):23 (1958).Google Scholar
  50. 50.
    Trusov, L. P. et al., Metalloved. i Term. Obrabotka Metal. (5):27 (1956).Google Scholar
  51. 51.
    Ratner, A. V., Teploénerg. (10):12 (1957).Google Scholar
  52. 52.
    Sobolev, N. D., Fiz. Metal. i Metalloved. 9(5):758 (1960).Google Scholar
  53. 53.
    Boas, W., and Honeycombe, R., Proc. Roy. Soc. A. 186(1004):57 (1946).CrossRefGoogle Scholar
  54. 54.
    Boas, W., and Honeycombe, R., Proc. Roy. Soc. A. 188 (1015):28 (1947).CrossRefGoogle Scholar
  55. 55.
    Wood, W., and Segall, R„ J. Brit. Inst. Metals (Jan. 1958).Google Scholar
  56. 56.
    Fridman, Ya. B., and Egorov, V. I., Metalloved i Term. Obrabotka Metal. (7):27 (1960).Google Scholar
  57. 57.
    Boas, W., and Honeycombe, R., Nature 153(3886):494 (1944); 154(3906):338 (1944).CrossRefGoogle Scholar
  58. 58.
    Likhachev, V. A.,Inform. Byul. Leningr. Politekhn. Inst. (12):36, 44 (1958).Google Scholar
  59. 59.
    Chizuik and Kel’man, Effect of Cyclic Heat Treatment on Uranium, International Conference on the Peaceful Uses of Atomic Energy (Geneva, 1959). Vol. 9-Reactor Technology and Chemical Treatment of Nuclear Fuel, Moscow, Izd. AN SSSR, 1958, p. 184.Google Scholar
  60. 60.
    Avery, H., Trans. Am. Soc. Metals 38:957 (1947).Google Scholar
  61. 61.
    L’vovskii, M. Ya., and Smiyan, I. A., Zavodsk. Lab. 24(2):202 (1958).Google Scholar
  62. 62.
    Weisberg, H., and Soldan, H., Trans. ASME 76(7),1085 (1954).Google Scholar
  63. 63.
    Bentele, M., and Lowthian, J., Air Eng. 24(276):32 (1952).Google Scholar
  64. 64.
    Oding, I. A., and Kostochkin, Yu. V., Zavodsk. Lab. (7):863 (1959).Google Scholar
  65. 65.
    Fridman, Ya. B., Sobolev, N. D., and Egorov, V. I., Zavodsk. Lab. (4),467 (1960).Google Scholar
  66. 66.
    Coffin, L., Prod. Eng. 28 (6) (1957).Google Scholar
  67. 67.
    Haas, B., Arch. Eisenhüttenw. No. 5 (1956).Google Scholar
  68. 68.
    Kraston, D., et al., Atomnaya tekhnika za rubezhom, No. 4 (1954).Google Scholar
  69. 69.
    Shorr, B. F., Dokl. Akad. Nauk SSSR 123(5):809 (1958).Google Scholar
  70. 70.
    Langer, B., Trans. ASME 77, No. 5 (1955).Google Scholar
  71. 71.
    Klypin, A. A., The Phenomenon of Thermal Fatigue and the Failure Mechanism of Heat-Resistant Alloys at High Temperatures, Resume of Candidate’s Dissertation MAI, Moscow 1954.Google Scholar

Copyright information

© Springer Science+Business Media New York 1964

Authors and Affiliations

  • N. D. Sobolev
  • V. I. Egorov

There are no affiliations available

Personalised recommendations