Ballistic Transport in Quasi-One-Dimensional Structures

  • D. A. Wharam
  • M. Pepper
  • R. Newbury
  • D. G. Hasko
  • H. Ahmed
  • J. E. F. Frost
  • D. A. Ritchie
  • D. C. Peacock
  • G. A. C. Jones
  • T. J. Thornton
  • U. Ekenberg
Part of the NATO ASI Series book series (NSSB, volume 206)

Abstract

The split-gate structure illustrated in Plate 1, and modifications thereof, have been fabricated on a variety of high-mobility heterostructures grown by Molecular Beam Epitaxy at the Cavendish Laboratory. The lithographic length of the split-gate channel was defined to be 0.3 µm whilst the defined channel width was 0.5 µm. The significance of the low temperature high-mobility behaviour is to be seen immediately. The eigenstates of momentum are extremely long-lived and give rise to elastic lengths which can be in excess of several microns. Furthermore the inelastic length, which can be extracted from physical phenomena such as universal conductance fluctuations (Thornton 1987) or Aharanov-Bohm oscillations (Ford 1989), is also of the same order of magnitude. Electrons therefore pass ballistically through the narrow constriction, defined by the application of a negative bias to the gate electrodes, the only scattering being specular scattering from the side walls of the confining potential. Furthermore the Fermi wavelength of the two-dimensional electron gas (2DEG), which is given by \( {{\lambda }_{f}} = \sqrt {{(2\pi /{{n}_{s}})}} \) and is of the order of 50 nm, is comparable to the effective channel width in these devices and hence the quantum nature of the electrons should be significant.

Keywords

Fermi Energy Channel Width Gate Voltage Gate Bias Resonant Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, T., Fowler, A.B., Stem, F., Rev. Mod. Phys. 54, 437, (1982).ADSCrossRefGoogle Scholar
  2. Beenakker, C.W.J., van Houten, H., Phys. Rev B 39 (14), 10445, (1989).ADSCrossRefGoogle Scholar
  3. Berggren, K.-F.,Thornton, T.J., Newson, D.J., Pepper, M., Phys. Rev. Lett. 57 (14), 1769, (1986)Google Scholar
  4. Berggren, K.-F., Newson, D.J., Semicond. Sci. Technol. 1, 246, (1986).ADSCrossRefGoogle Scholar
  5. Biittiker, M., Phys. Rev. B 33, 3020, (1986a).ADSCrossRefGoogle Scholar
  6. Biittiker, M., Phys. Rev. Lett. 57, 1761, (1986b).ADSCrossRefGoogle Scholar
  7. Davies, J.H., Private Communication (1989).Google Scholar
  8. Escapa, L., Garcia, N., J. Phys. Condens. Matter 1, 2125, (1989).ADSCrossRefGoogle Scholar
  9. Ford, C.J.B., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Peacock, D.C., Ritchie, D.A., Frost, J.E.F., Jones, G.A.C., Appl Phys. Lett. 54 (1), 21, (1989).ADSCrossRefGoogle Scholar
  10. Glazman, L.I., Lesovik, G.B., Khmel’nitskii, D.E., Shekhter, R.E., JETP Lett. 48(4), 218, (1988)Google Scholar
  11. Glazman, L.I., Khaetskii, A.V., Preprint (1989).Google Scholar
  12. Haanappel, E.G., van der Marel, D., Phys. Rev. B 39, 5484, ( 1989 ). He, S., Das Sarma, S., Preprint (1989).Google Scholar
  13. Huckestein, B., Johnston, R., Schweitzer, L., Preprint (1988) to be published “High Magnetic Fields in Semiconductor Physics”, Würzburg Conference.Google Scholar
  14. Janak, J.F., Phys.Rev. 178, 1416, (1969).ADSCrossRefGoogle Scholar
  15. Johnston, R., Schweitzer, L., J. Phys. C 21, L861, (1988).ADSCrossRefGoogle Scholar
  16. Kirczenow, G., Solid State Comm. 68 (8), 715, (1988)ADSCrossRefGoogle Scholar
  17. Kirczenow, G., J. Phys. Condens. Matter 1, 305, (1989).ADSCrossRefGoogle Scholar
  18. Kumar, A., Laux, S.E., Stem, F., Preprint from APS (St. Louis) meeting, March 1989.Google Scholar
  19. Landau, L.D., Lifshitz, E.M., Quantum Mechanics, 3rd Edn., ( Pergamon, Oxford, 1977 ).Google Scholar
  20. Laux, S.E., Stem, F., Appl. Phys. Lett. 49 (2), 91, (1986).ADSCrossRefGoogle Scholar
  21. Laux, S.E., Frank, D.J., Stern, F., Surface Science 196, 101, (1988).ADSCrossRefGoogle Scholar
  22. Levinson, I.B., Sukhorukov, E.V., Khaetskii, A.V., JETP Lett. 45, 488, (1987).ADSGoogle Scholar
  23. Levinson, I.B., JETP Lett. 48, 273, (1988).Google Scholar
  24. MacKinnon, A., J. Phys. C 13, L1031, (1980).ADSCrossRefGoogle Scholar
  25. Mathews, J., Walker, R.L., Mathematical Methods of Physics, 2nd Edn. (Benjamin, 1970 )Google Scholar
  26. Nicholas, R.J., Haug, R.J., von Klitzing, K., Weimann, G., Phys. Rev. B 37 (3), 1294, (1988).ADSCrossRefGoogle Scholar
  27. Poole, D.A., Pepper, M., Berggren, K.-F., Hill, G., Myron, H.W., J. Phys. C 15, L21, (1982).ADSCrossRefGoogle Scholar
  28. Sharvin, Yu.V., JETP 21, 655, (1965).ADSGoogle Scholar
  29. Smith, III, T.P., Brum, J.A., Hong, J.M., Knoedler, C.M., Arnot, H., Esaki, L., Phys. Rev. Lett. 61 (5), 585, (1988).ADSCrossRefGoogle Scholar
  30. Szafer, A., Stone, A.D., Phys. Rev. Lett. 62, 300, (1989).ADSCrossRefGoogle Scholar
  31. Thornton, T.J., Pepper, M., Ahmed, H., Andrews, D., Davies, G., Phys. Rev. Lett. 56, 1198, (1986).ADSCrossRefGoogle Scholar
  32. Thornton, T.J., Pepper, M., Ahmed, H., Davies, G., Andrews, D., Phys. Rev. B 36, 4514, (1987).CrossRefGoogle Scholar
  33. Thouless, D.J., Kirkpatrick, S., J. Phys. C 14, 235, (1981).ADSCrossRefGoogle Scholar
  34. van der Marel, D., Haanappel, E.G., Phys. Rev. B 39 (11), 7811, (1989).ADSCrossRefGoogle Scholar
  35. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., Foxon, C.T., Phys. Rev. Lett. 60 (9), 848, (1988a).ADSCrossRefGoogle Scholar
  36. van Wees, B.J., Kouwenhoven, L.P., van Houten, H., Beenakker, C.W.J., Mooij, J.E., Foxon, C.T., Harris, J.J., Phys. Rev. B 38, 3625, (1988b).ADSCrossRefGoogle Scholar
  37. Weisz, J.F., Berggren, K.-F., Preprint (1989).Google Scholar
  38. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., Jones, G.A.C., J. Phys. C 21, L209, (1988a).ADSCrossRefGoogle Scholar
  39. Wharam, D.A., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., Jones, G.A.C., J. Phys. C 21, L887, (1988b).ADSCrossRefGoogle Scholar
  40. Wharam, D.A., Ekenberg, U., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., Jones, G.A.C., Phys. Rev. B 39 (9), 6283, (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • D. A. Wharam
    • 1
  • M. Pepper
    • 1
  • R. Newbury
    • 1
  • D. G. Hasko
    • 1
  • H. Ahmed
    • 1
  • J. E. F. Frost
    • 1
  • D. A. Ritchie
    • 1
  • D. C. Peacock
    • 2
  • G. A. C. Jones
    • 1
  • T. J. Thornton
    • 3
  • U. Ekenberg
    • 4
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.GEC Research Centre.Wembley, MiddlesexUK
  3. 3.BellcoreRed BankUSA
  4. 4.Dept. of PhysicsUppsala UniversityUppsalaSweden

Personalised recommendations