Population Analysis, Bond Orders, and Valences

  • István Mayer
Part of the Mathematical and Computational Chemistry book series (MACC)

Abstract

When performing quantum chemical investigations, one usually concentrates on the values of the total energy and on different quantities related to the latter, like the geometrical parameters corresponding to an energy minimum, the vibrational frequencies that are determined by the shape of the potential energy surface around the energy minimum, etc. Often one wishes to get a better understanding of the system studied by utilizing not only the energetic data but also the information contained in the wave function. However, the wave function is usually defined by too big a set of numerical data to be directly used for that purpose, and one needs a sort of “data compression” to make any interpretation of the result possible.

Keywords

Bond Order Boron Atom Basis Orbital Orbital Population Correlate Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.G. Hall Chairman’s remarks, 5th International Congress on Quantum Chemistry, Montreal, 1985.Google Scholar
  2. 2.
    R.S. Mulliken, J. Chem. Phys. 23, 1833, 1841, 2338, 2343 (1955)Google Scholar
  3. 3.
    T. Veszprémi and M. Fehér, Quantum Chemistry: Fundamentals to Applications, Kluwer Academic/Plenum New York, 1999.Google Scholar
  4. 4.
    J. A. Pople and D. L. Beveridge Approximate Molecular Orbital Theory, McGraw-Hill, New York 1970.Google Scholar
  5. 5.
    J. Baker: Theor. Chim. Acta 68, 221 (1985)CrossRefGoogle Scholar
  6. 6.
    K.A. Wiberg, Tetrahedron 24, 1083 (1968)CrossRefGoogle Scholar
  7. 7.
    N.P. Borisova and S.G. Semenov, Vestn. Leningrad. Univ. 1976, No. 16, 98 (1976)Google Scholar
  8. 8.
    N.P. Borisova and S.G. Semenov, Vestn. Leningrad. Univ. 1973, No. 16, 119 (1973)Google Scholar
  9. 9.
    K. Jug, private communication to the author, 1984.Google Scholar
  10. 10.
    M. Giambiagi, M.D. de Giambiagi, D.R. Grempel and C.D. Heynemann: J. Chim. Phys. 72, 15 (1975)Google Scholar
  11. 11.
    I. Mayer, Chem. Phys. Letters, 97, 270 (1983);CrossRefGoogle Scholar
  12. I. Mayer, Addendum: 117, 396 (1985)Google Scholar
  13. 12.
    I. Mayer, Int. J. Quantum Chem. 23, 341 (1983)CrossRefGoogle Scholar
  14. 13.
    I. Mayer, Int. J. Quantum Chem. 29, 73 (1986)CrossRefGoogle Scholar
  15. 14.
    I. Mayer, Int. J. Quantum Chem. 29, 477 (1986)CrossRefGoogle Scholar
  16. 15.
    I. Mayer, Theor. Chim. Acta 67, 315 (1985)CrossRefGoogle Scholar
  17. 16.
    I. Mayer, DSc. Thesis, Hungarian Academy of Sciences, Budapest 1986 (unpublished).Google Scholar
  18. 17.
    D.R. Armstrong, P.G. Perkins and J.J.P. Stewart, J. Chem. Soc. Dalton Trans. 1973, 838, 2273 (1973)CrossRefGoogle Scholar
  19. 18.
    I. Mayer, J. Mol. Struct. (Theochem)186, 43 (1989)Google Scholar
  20. 19.
    A.B. Sannigrahi, Adv. Quantum Chem. 23, 301 (1992)CrossRefGoogle Scholar
  21. 20.
    A.J. Bridgeman, G. Cavigliasso, L.R. Ireland and J. Rothery, J. Chem. Soc Dalton Trans. 2001 2095 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • István Mayer
    • 1
  1. 1.Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations