A New Aids Therapy Approach Using Magnetoliposomes
Abstract
A new concept for the treatment of the AIDS infection is described whereby a simple heat treatment is used to irreversibly inactivate the AIDS virus. The temperatures of more than 50°C required for the virus inactivation are achieved by inductively heating magnetoliposomes (ML) designed for in vivo administration. To ensure that the heat is transferred solely to the HIV and not to the adjacent tissue, the ML are pre-coated with CD4 receptor molecules, thus enabling a close attachment of the ML to the HIV via its gp 120 envelope protein. This process corresponds to the in vivo HIV infection pathway. To assess the feasibility of the new approach, serum albumin and IgG were used as model proteins for the CD4 receptor and successfully coupled to ML. Induction heating experiments with diverse ML suspensions and magnetic colloids clearly demonstrated that the magnetic particles can be selectively heated up to the required temperatures.
Keywords
Human Immunodeficiency Virus Type Lauric Acid Magnetic Fluid Inductive Heating Chromotropic AcidPreview
Unable to display preview. Download preview PDF.
References
- 1.Johnston MI and McGowan JJ (1992). Strategies and Progress in the Development of Antiviral Agents. in AIDS 3rd Ed., DeVita VT, Hellman S, Rosenberg SA (Eds), Philadelphia, JB Lippincott, 357–371.Google Scholar
- 2.Perelson AS, Neumann A, Markowitz M et al (1996). HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271 1582–1586.ADSCrossRefGoogle Scholar
- 3.Shirasaka T, Kavlick MF, Ueno T et al (1995). Emergence of human immunodeficiency virus type I variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc. Nat. Acad. Sci. 92, 2398–2402.ADSCrossRefGoogle Scholar
- 4.Narrer T (1995). HIV and AIDS. In Medizinische Immunologie. Baenkler (Ed), Landsberg/Lech, Ecomed Verlagsgesellschaft, 1–36.Google Scholar
- 5.Moutouh L, Corbeil J and Richman DD (1996). Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc. Nat. Acad. Sci. 93 6106–6111.ADSCrossRefGoogle Scholar
- 6.Lane HC and Kovacs JA (1994). Interleukin-2 as therapy for HIV disease. The New England Journal of Medicine 333 193.Google Scholar
- 7.Baier M, Werner A, Barmen N et al (1996). HIV suppression by interleukin-16. Nature 378 563.ADSCrossRefGoogle Scholar
- 8.McElrath MJ, Corey L, Greenberg PD et al (1996). Human immunodeficiency virus type 1 infection despite prior immunization with a recombinant envelope vaccine regimen. Proc. Nat. Acad. Sci. 93 3972–3977.ADSCrossRefGoogle Scholar
- 9.Fuxman YL (1993). On the mechanism of HIV disease: a hypothesis and the anti-AIDS therapy it suggests. Medical Hypothesis 41 467–469.CrossRefGoogle Scholar
- 10.AIDS Etiology, Diagnosis, Treatment and Prevention (1992). DeVita VT, Hellman S and Rosenberg SA (Eds), Philadelphia, JB Lippincott, 3rd Edition.Google Scholar
- 11.Walker BD (1994). The rationale for immunotherapy in HIV-1 infection. Journal of Acquired Immune Deficiency Syndrome 7 S6–S13.Google Scholar
- 12.Bour S, Geleziunas R and Wainberg MA (1995). The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiological Reviews 59 63–93.Google Scholar
- 13.Wong GHW, McHugh T, Weber R and Goeddel DV (1991). Tumor necrosis factor a selectively sensitizes human immunodeficiency virus infected cells to heat and radiation. Proc. Nat. Acad. Sci. 88 4372–4376.ADSCrossRefGoogle Scholar
- 14.Martin LS, McDougal JS and Loskoski SL (1985). Disinfection and inactivation of the human T lymphotropic virus type III/lymphadenopathy-associated virus. The Journal of Infectious Diseases 152 400–403.CrossRefGoogle Scholar
- 15.Müller-Schulte D, Füssl F, Lueken H and De Cuyper M (1995). Neuer Ansatz für die AIDS-Therpie unter Verwendung superparamagnetischer Nanopartikel. In Alma Mater Aquensis Band XXXI, University Aachen (Ed), 174–187.Google Scholar
- 16.Müller-Schulte D (1995). Mittel zur selektiven AIDS Therapy sowie Verfahren zur Herstellung und Verwendung derselben. German Patent DE 4412651.Google Scholar
- 17.Franconi C, Raganella L, Tiberio CA and Begnozzi L (1991). Low frequency RF hyperthermia; IV-A 27 MHz hybrid applicator for localized deep tumor heating. IEEE Transactions on Biomedical Engineering 38, 287–293.CrossRefGoogle Scholar
- 18.Lee CA, Phillips AN, Elford J et al (1992). Applications of CD4 counts in a cohort of HIV-1 seropositive patients with haemophilia. In Immunodeficiency in HIV infection and AIDS. Janossy G, Autran B and Miedema F (Eds), Windsor, Surrey, Karger, 32–46.Google Scholar
- 19.Shinkai M, Suzuki M, lijima S and Kobayashi T (1994). Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia. Biotechnology and Applied Biochemistry 21 125–137.Google Scholar
- 20.Masuko Y, Tazawa K, Viroochatapan E et al (1995). Possibility of thermosensitive magnetoliposomes as new agent for electromagnetic induced hyperthermia. Biological Pharmaceutical Bulletin 18 1802–1804.CrossRefGoogle Scholar
- 21.Gordon RT (1987). Use of magnetic susceptibility probes in the treatment of cancer. U.S. Patent 4,662,359.Google Scholar
- 22.Jordan A, Wust P, Fähling H et al (1993). Inductive heating offerrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia 9, 51–68.CrossRefGoogle Scholar
- 23.Litzinger DC, Buiting AMJ, van Rooijen and Huang L (1994). Effect of liposome size on the circulation time and intraorgan distribution ofamphipathic poly(ethylene glycol)-containing liposomes. Biochimica et Biophysica Acta 1190 99–107.CrossRefGoogle Scholar
- 24.Reimers GW and Khalafalla (1974). Production of magnetic fluids by peptization techniques. US Patent 3,843,540.Google Scholar
- 25.De Cuyper M and Joniau M (1990). Potentialities of magnetoliposomes in studying symmetric and asymmetric phospholipid transfer processes. Biochimica et Biophysica. Acta 1027 172–178.CrossRefGoogle Scholar
- 26.De Cuyper M and Joniau M (1988). Magnetoliposomes formation and structural charaterization. European Biophysics Journal 15 311–319.Google Scholar
- 27.De Cuyper M and Joniau M (1991). Mechanistic aspect of the adsorption ofphospholipids onto lauric acid stabilized. Fe nanocolloids. Langmuir 7 647–652.CrossRefGoogle Scholar
- 28.De Cuyper M (1996). Applications of magnetoproteoliposomes in bioreactors operating in high-gradient magnetic field. In Handbook of Nonmedical Applications of Liposomes Vol III. Barenholz Y and Lasic DD (Eds), Boca Raton, CRC Press Inc, 323–340.Google Scholar
- 29.Gabizon A and Papahadjopoulos D (1988). Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Nat. Acad. Sci. 85 6949–6953.ADSCrossRefGoogle Scholar
- 30.Woodle MC, Matthay KK, Newman et al (1992). Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochimica et Biophysica Acta 1105 193–200.CrossRefGoogle Scholar
- 31.Allen TM, Austin GA, Chonn A et al (1991). Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochimica et Biophysica Acta 1061 56–64.CrossRefGoogle Scholar
- 32.De Cuyper M and Noppe W (1996). Extractability of the phospholipid envelope of magnetoliposomes by organic solvents. Journal of Colloid and Interface Science 182 478–482.CrossRefGoogle Scholar
- 33.Yaacob II, Nunes AC, Bose A et al (1994). Synthesis and characterization of magnetic nanoparticles in spontaneously generated vesicles. Journal of Colloid and Interface Science 168 289–301.CrossRefGoogle Scholar
- 34.Yaacob II, Nunes AC and Bose A (1995). Magnetic nanoparticles produced in spontaneous cationic-anionic vesicles; room temperature synthesis and characterization. Journal of Colloid and Interface Science 171 73–84.CrossRefGoogle Scholar
- 35.Mann S and Hannington JP (1988). Formation of iron oxides in unilamellar vesicles. Journal of Colloid and Interface Science 122 326–335.CrossRefGoogle Scholar
- 36.Bogdanov AA, Martin C, Weissleder R et al (1994). Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. Biochimica et Biophysica Acta 1193 212–218.CrossRefGoogle Scholar
- 37.Viroonchatapan E, Ueno M, Sato H et al (1995). Preparation and characterization of dextran magnetite-incorporated thermosensitive liposomes: an on-line flow system for quantifying magnetic responsiveness. Pharmaceutical Research 12 1176–1183.CrossRefGoogle Scholar
- 38.Menager C and Cabuil V (1995). Synthesis of magnetic liposomes. Journal of Colloid and Interface Science 169 251–253.CrossRefGoogle Scholar
- 39.Weissleder R, Bogdanov AA, Neuwelt EA et al (1995). Long circulating iron oxides for MR imaging. Advances in Drug Delivery Review 16 321–334.CrossRefGoogle Scholar
- 40.Flasher D, Konopka K, Chamow SW et al (1994). Liposome targeting to human immunodeficiency virus type 1-infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-IgG). Biochimica et Biophysica Acta 1194 185–196.CrossRefGoogle Scholar
- 41.Hansen CB, Kao GY, Moase EH et al (1995). Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochimica et Biophysica Acta 1239 133–144.CrossRefGoogle Scholar
- 42.Heath TD, Macher BA and Papahadjopoulos D (1981). Covalent attachment of immunoglobulins to liposomes via glycosphingolipids. Biochimica et Biophysica Acta 649 66–81.CrossRefGoogle Scholar
- 43.Lentz RR, Alford DR and Dombrose FA (1980). Determination of Phosphatidylglycerol asymmetry in small, unilamellar vesicles by chemical modification. Biochemistry 19 2555–2559.CrossRefGoogle Scholar
- 44.Smith PK, Krohn RI, Hermanson GT et al (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150 76–85.CrossRefGoogle Scholar
- 45.Chan DCF, Kirpotin DB and Bunn PA (1993). Synthesis and evaluation of colloid magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials 122 374–378.ADSCrossRefGoogle Scholar
- 46.Kittel C (1989). In Einführung in die Festkörperphysik. München,Wien, R. Oldenburg Verlag, 455–527.Google Scholar
- 47.Hanson M (1991). The frequency dependence of the complex susceptibility of magnetic fluids. Journal of Magnetism and Magnetic Materials. 96 105–113.ADSCrossRefGoogle Scholar
- 48.Sato T and Sunamoto J (1992). Recent aspects in the use of liposomes in biotechnology and medicine. Progress in Lipid Research 31 345–372.CrossRefGoogle Scholar