Cellular and Dendritic Growth

  • Doru Michael Stefanescu

Abstract

Many of the alloys used in practice, such as steel, aluminum-copper alloys, nickel-base and copper-base alloys, are single phase alloys, which means that the final product of solidification is a solid solution. Depending on the thermal and compositional field, cellular or, in most practical cases, dendritic morphology will occur. In other cases, even when the room temperature microstructure is mostly eutectic some primary phases solidify before the eutectic. They can be solid solutions, carbides, intermetallic phases, inclusions, etc. Their morphology affects mechanical properties, and thus, understanding how this morphology can be controlled is a mater of significant practical importance. A detailed discussion of primary phase growth, and in particular of dendrite growth, will be provided in the following sections.

Keywords

Growth Velocity Solidification Velocity Primary Spacing Columnar Dendrite Constitutional Undercooling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ananth R. and W.N. Gill, 1988, J. Crystal Growth 91: 587CrossRefGoogle Scholar
  2. Ardell A.J., 1972, Acta Metall. 20: 61CrossRefGoogle Scholar
  3. Bensimon D., P. Pelee, and B. I. Shraiman, 1987, J. Phys. A 48: 2081Google Scholar
  4. Biloni H. and W.J. Boettinger, 1996, in: Physical Metallurgy; fourth edition, R.W. Cahn and P. Haasen eds., Elsevier Science BV p. 670Google Scholar
  5. Boettinger W. J., S.R. Coriell, and R. Trivedi, 1988, in: Rapid Solidification processing: Principles and Technologies, R. Mehrabiana and P. A. Parrish eds., Claitor’s Publishing, Baton Rouge p. 13Google Scholar
  6. Bouchard D. and J.S. Kirkaldy, 1997, Metall. and Mater. Trans 28B: 651CrossRefGoogle Scholar
  7. Bowers T.F., H.D. Brody and M. C. Flemings, 1966, Trans AIME 236: 624Google Scholar
  8. Burden N. H. and J.D. Hunt, 1974, J. Cryst. Growth 22Google Scholar
  9. Cohen M. and M.C. Flemings, 1985, in: Rapidly Solidified Crystalline Alloys, S.K. Das, B.H. Kear and C.M. Adam eds., TMS, Warrendale, PA p. 3Google Scholar
  10. Dupouy M.D., D. Camel, F. Botalla, J. Abadie, and J.J. Favier, 1998, Microgravity sci. technol. XI (1):2 Dustin I. and W. Kurz, 1986, Zeitschrift Metallkde 77: 265Google Scholar
  11. Elliott R., 1983, Eutectic Solidification Processing, Butterworths, LondonGoogle Scholar
  12. Flemings M.C., T.Z. Kattamis and B.P. Bardes, 1991, AFS Trans. 99: 501Google Scholar
  13. Glicksman M.E., M.B. Koss, L.T. Bushnell, J.C. Lacombe and E.A. Winsa, 1995, ISLI International 35: 604CrossRefGoogle Scholar
  14. Guo X. and D.M. Stefanescu, 1992, AFS Trans, 100: 273Google Scholar
  15. Huang S. C. and M.E. Glicksman, 1981, Acta Metall. 29: 701CrossRefGoogle Scholar
  16. Hunt J. D., 1979, in: Solidification and Casting of Metals, The Metals Society, London p. 3Google Scholar
  17. Hunt J. D., 1984, Mat. Sci. and Eng, 65: 75CrossRefGoogle Scholar
  18. Ivantsov G. P., 1947, Doklady Akademü Nauk SSSR 58: 695Google Scholar
  19. Jackson K.A. and J.D. Hunt, 1965, Acta Metall. 13: 1212CrossRefGoogle Scholar
  20. Kanetkar G.S. and D.M. Stefanescu, 1988, in: Modeling of Casting and Welding Processes Il, A. Giamei, G.J. Abbaschian editors, TMS Warrendale. Pa p. 697Google Scholar
  21. Karma A. and W.J. Rappel, 1996, Phys. Rev. E, 53: R3017CrossRefGoogle Scholar
  22. Kattamis T.Z. and M.C. Flemings, 1965, Trans. Met. Soc. AIME, 233: 992Google Scholar
  23. Kessler D.A., J. Koplik and H. Levine, 1986, in: Computer Simulation of Microstructural Evolution, D. J. Srolovitz editor, TMS, Warrendale, PA p. 95Google Scholar
  24. Kessler D.A and H. Levine, 1986, Phys. Rev. Lett 57: 3069CrossRefGoogle Scholar
  25. Kim S.G., W.T. Kim, J.S. Lee, M. Ode and T. Suzuki, 1999, ISIJInt. 39, 4: 335Google Scholar
  26. Kobayashi S., 1992, in: Pattern Formation in Complex Dissipative Systems, S. Kai ed., World Science, Singapore p. 121Google Scholar
  27. Koseki T. and M. C. Flemings, 1995, ISIJInternational 35: 611Google Scholar
  28. Kurz W. and D.J. Fisher, 1981, Acta Metall. 29: 11CrossRefGoogle Scholar
  29. Kurz W., Giovanola B. and Trivedi R., 1986, Acta Metall. 34: 823CrossRefGoogle Scholar
  30. Kurz W. and D. J. Fisher, 1989, Fundamentals of Solidification, 3rd ed., Trans Tech Publications, SwitzerlandGoogle Scholar
  31. Langer J. S. and H. Müller-Krumbhaar, 1978, Acta Metall. 26: 1681CrossRefGoogle Scholar
  32. Laxmanan V., 1985, Acta Metall. 33: 1023CrossRefGoogle Scholar
  33. Lipton J., M.E. Glicksman and W. Kurz, 1984, Mat. Sci. Eng 65: 57CrossRefGoogle Scholar
  34. Lux B., I. Minkoff, F. Mollard and E. Thury, 1975, in: The Metallurgy of Cast Iron, B. Lux, I. Minkoff and F. Mollard eds., Georgi Publ. Co., St Saphorin, Switzerland p. 497Google Scholar
  35. Miyata Y., 1995, ISIJ International 35: 600CrossRefGoogle Scholar
  36. Morris L.R. and W.C. Winegard, 1969„/ Crystal Growth 6:61Google Scholar
  37. Mortensen A., 1991, Metall. Trans 22A: 569Google Scholar
  38. Nastac L. and D. M. Stefanescu, 1993, Metall. Trans 24A: 2107CrossRefGoogle Scholar
  39. Nastac L. and D. M. Stefanescu, 1996, Metall. Trans 27A:4061 and 4075Google Scholar
  40. Nastac L., J.S. Chou, and Y. Pang, 1999, in: Symp. on Liquid Metal Processing and Casting, Santa Fe, New MexicoGoogle Scholar
  41. Ode M., T. Suzuki, S.G. Kim and W.T. Kim, 2000, Sc. Tech. Adv. Mater 1: 43CrossRefGoogle Scholar
  42. Rappaz M. and P. Thévoz, 1987, Acta. Metall. 35:1487 and 2929Google Scholar
  43. Trivedi R. and W. Kurz, 1988, in: Metals Handbook Ninth Edition vol. 15 Casting, D.M. Stefanescu cd., ASM International, Metals Park, Ohio p. 114Google Scholar
  44. Trivedi R. and W. Kurz, 1994, International Materials Reviews 39,2:49Google Scholar
  45. Voorhees P.W. and E.M. Glicksman, 1984, Metall. Trans 15A: 1081CrossRefGoogle Scholar
  46. Wang C.Y. and C. Beckermann, 1993a, Mater. Sci. and Eng A171: 2787Google Scholar
  47. Wang C.Y. and C. Beckermann, 1993, Metall. Trans 24A: 2787Google Scholar
  48. Wang C.Y. and C. Beckermann, 1994, Metall. Trans 25A: 1081CrossRefGoogle Scholar
  49. Wang C.Y. and C. Beckermann, 1996, Metall. Mater. Trans 27A: 2754CrossRefGoogle Scholar
  50. Warren J.A. and W.J. Boettinger, 1995, Acta metall. mater 43: 689CrossRefGoogle Scholar
  51. Wheeler A.A., W.J. Boettinger and G.B. McFadden, 1992, Phys. Rev. A 45: 7424CrossRefGoogle Scholar
  52. Wheeler A.A., G.B. Mc Fadden and W.J. Boettinger, 1996, Proc.Royal Soc. London A 452: 495CrossRefGoogle Scholar
  53. Zhu P. and R. W. Smith, 1992, Acta metall. mater 40:683 and 3369Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Doru Michael Stefanescu
    • 1
  1. 1.University of AlabamaTuscaloosaUSA

Personalised recommendations