Acoustic Gas-Jet Generators of the Hartmann Type

  • Yu. Ya. Borisov
Part of the Ultrasonic Technology book series (ULTE, volume 1)


It has been demonstrated in the published works of various researchers over the last two decades that a great many technological processes can be accelerated by means of high-intensity elastic vibrations. Among these processes are some that take place in a gas medium. Thus, by using sound vibrations at intensities in excess of 0.01 W/cm2, it is possible to realize the ultrapurification of dust-ridden gases [1–3], to accelerate considerably the breakdown of foam formed in certain technological processes [4, 5], and to intensify the drying of thermosensitive and hard-to-dry materials, when for one reason or another it is unfeasible to use high temperatures [6–8]. Elastic vibrations at the proper frequencies can be used to affect combustion processes [4, 9, 10], by changing the size of the flame and promoting more complete combustion of liquid fuel with the latter forming a fine spray in acoustic injectors.


Cavity Depth Acoustic Pressure Compression Shock Nozzle Diameter Resonator Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. P. Mednikov, Acoustic Coagulation and Precipitation of Aerosols, Izd. AN SSSR (1963).Google Scholar
  2. 2.
    R. M. G. Boucher, La coagulation des aérosols industriels par ultra-sons [Ultrasonic coagulation of industrial aerosols], Genis chimique, 77(7): 163; ‘78(1): 14 (1957).Google Scholar
  3. 3.
    B. Maczewski-Rowinski, Dust abatement from industrial gases by the beam of a siren, Proc. Intern. Clean Air Conf., London (1960), p. 160.Google Scholar
  4. 4.
    R. M. G. Boucher, Ultrasonics in processing, Chem. Eng.68 (20): 83 (1961).Google Scholar
  5. 5.
    R. M. G. Boucher and A. L. Weiner, Foam control by acoustic and aerodynamic means, Brit. Chem. Eng., 8 (12): 808 (1963).Google Scholar
  6. 6.
    R. M. G. Boucher, Drying by airborne ultrasonics, Ultrasonic News, 3(2): 8–9, 14–17 (1959).Google Scholar
  7. 7.
    P. Greguss, Drying by airborne ultrasonics, Ultrasonic News, 5 (3): 7 (1961).Google Scholar
  8. 8.
    S. Soloff, Sonicdrying, J. Acdust. Soc. Am., 36 (5): 961 (1964).Google Scholar
  9. 9.
    P, Greguss, Influencing combustion processes by sound, Ultrasonic News, 3(4): 101–117 (1959)Google Scholar
  10. 10.
    P. N. Kubanskii, Influence of acoustic vibrations on the combustion process, Tr. Leningr, Tekhn. Inst., 5: 307 (1958).Google Scholar
  11. 11.
    V. V. Vyaltsev and V. G. Khorguani, A powerful low-frequency acoustic siren, Akust. Zh., 7 (3): 377 ( 1964Google Scholar
  12. 12.
    V. A. Veller and B. I. Stepanov, Ultrasonic sirens with an electric motor drive, Akust. Zh., 9(3): 291 (1963)Google Scholar
  13. 13.
    V. Gavreau, Sifflets, théorie de fonctionnement et rendement [Whistles, theory of their function and design], Acustica, 5: 555 (1954).Google Scholar
  14. 14.
    V. Gavreau and A. Calaora, Générateurs puissants de son et d’ultra-sons i èmetteurs couples [High-Power Sonic and Ultrasonic Generators Using Coupled Emitters], French Patent, Book GOlh, No. 1131551 (1957).Google Scholar
  15. 15.
    R. Jahn, Improvement in Sound Generator, British Patent, Book 13B5, No. 851194 (1958).Google Scholar
  16. 16.
    R. Lavavasseur, High Power Generators of Sound and Ultrasounds, US Patent, Book 116–137, No. 2755767 (1956).Google Scholar
  17. 17.
    B. Vonnegut, A vortex whistle, J. Acoust. Soc. Am., 26(1): 1820 (1954)CrossRefGoogle Scholar
  18. 18.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, New York (1964).Google Scholar
  19. 19.
    M. E. Deich, Engineering Gas Dynamics, Gosénergoizdat, Moscow-Leningrad (1961).Google Scholar
  20. 20.
    R. Emden, Über die Ausstriimungsercheinungen permanenter Gase [Efflux pheno• mena of a contined gas], Ann. Phys. Chem., 69(9): 264; 69(10); 426 (1899).Google Scholar
  21. 21.
    L. Prandtl, Über stationaren Wellen in einem Gestrahl [Stationary waves in a Jet], Phys. Z., 5; 19 (1904).Google Scholar
  22. 22.
    J. Hartmann and B. Trolle, New investigation on the air-jet generator for acoustic waves, Dann. Mat. Fys. Medd., 7 (6): 1 (1926).Google Scholar
  23. 23.
    D. C. Pack, A note on Prandtl’s formula for the wavelength of a supersonic gas jet, Quart. J. Mech. Applied Math., 3 (2): 173 (1950).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    K. A. MOrch, A theory for the mode of operation of the Hartmann air-jet generator, J. Fluid Mech„ 20 (1): 141 (1964).zbMATHCrossRefGoogle Scholar
  25. 25.
    J. Hartmann and B. Trolle, Modus operandi of the air-jet pulsator, Dann. Mat. Fys. Medd., Vol. 10, No. 4 (1930).Google Scholar
  26. 26.
    R. M. G. Boucher, Contribution à l’ étude des ultrasons aériens: production et applications [Contribution to the study of airborne ultrasonics; generation and applications], Publ. Sci. Tech. Min. Air (France), No. 79, p. 1 (1958).Google Scholar
  27. 27.
    V. P. Kurkin, Sound generated by a gas-jet siren, Akust. Zh., 7 (4): 442 (1961).Google Scholar
  28. 28.
    M. L. Varlamov, G. A. Manakin, E. L. Krichevskaya, and A. N. Gospodinov, Investigation of the sound field of a Hartmann-type acoustic gas-jet generator. Collection: Application of Ultrasonics to the Investigation of Matter, No. 12, Moscow (1960), p; 205.Google Scholar
  29. 29.
    A. A. Kharkevich, Autooscillations, Gostekhizdat, Moscow (1953).Google Scholar
  30. 30.
    J. Hartmann, The acoustic air-jet generator, Ingeni¢rvidenskabelige skrifter, No. 4, p. 1 (1939).Google Scholar
  31. 31.
    V. P. Kurkin, Oblique-shock gas-jet sound radiator, Akust. Zh., 8 (4): 438 (1962).Google Scholar
  32. 32.
    R. I. Shkolnikova, Acoustic air-jet generators for aerosol coagulation, Akust. Zh., 9 (3): 368 (1963).Google Scholar
  33. 33.
    A. P. Borisenko, Gas Dynamics of Engines, Oborongiz, Moscow (1962).Google Scholar
  34. 34.
    L. E. Savory, Experiments with the Hartmann acoustic generator, Engineering, 170(4410): 99; 170(4411): 136 (1950).Google Scholar
  35. 35.
    B. Laniak, Investigation of the bases of an ultrasonic generator in flow-type equipment, Proc. Symp. Electroacoustic Transducers, Warsaw (1961), p. 393.Google Scholar
  36. 36.
    W. K. Fortman, Apparatus for the Acoustic Treatment of Fluids, US Patent, Book 239–102, No. 3070313 (1962).Google Scholar
  37. 37.
    T. I. Mashkova, Acoustic drying of materials. Collection: Application of Ultrasonics in Industrial Chemical Processes, Moscow (1960), p. 196.Google Scholar
  38. 38.
    M. Sprenger, Über thermische Effekte in Resonanzrohren [The thermal effect in resonance tubes], Mitt. Inst. Aerodynamik Zurich, No. 21: 18 (1954).Google Scholar
  39. 39.
    P. A. Tompson, Jet-driven resonance tube, AIAA J., 2(7): 85 (1964).Google Scholar
  40. 40.
    M. Le Landais, Research on the stem-jet acoustic whistle, Ultrasonic News, 4 (4): 7 (1960).Google Scholar
  41. 41.
    W. K. Fortman, Acoustic Generator and Shock Wave Radiator, US Patent, Book 116–137, No. 3064619 (1962).Google Scholar
  42. 42.
    L. D. Rozenberg, Influence of the mean sound absorption coefficient on the level of sound intensity, Zh. Tekhn. Fiz., 10 (19): 1634 (1940).Google Scholar
  43. 43.
    R. J. Wells and F. M. Wiener, On the determination of the acoustic power of a source of sound in semireverberant spaces, Noise Control, 7 (1): 21 (1961).CrossRefGoogle Scholar
  44. 44.
    L. L. Beranek, Acoustics, McGraw-Hill, New York (1954).Google Scholar
  45. 45.
    A. I. Belov, Acoustical Measurements, Leningrad (1941).Google Scholar
  46. 46.
    J. Hartmann and T. Mortensen, A comparison of the Rayleigh disk and the acoustic radiometer methods for the measurement of sound wave energy, Ingeniorvidenskabelige skrifter, 2 (2): (1948).Google Scholar
  47. 47.
    H. O. Monson and R. C. Binder, Intensities produced by jet-type ultrasonic vibrators,J.Acoust. Soc. Am., 25 (5): 1007 (1953).Google Scholar
  48. 48.
    L. A. Vainshtein, Diffraction of Electromagnetic and Sound Waves by the Open End of a Waveguide, Izd. Sovetskoe Radio, Moscow (1953).Google Scholar
  49. 49.
    E. Brun and R. M. G. Boucher, Research on the acoustic air-jet generator: a new development, J. Acoust. Soc. Am., 29 (5): 163 (1957).CrossRefGoogle Scholar
  50. 50.
    V. P. Kurkin, A Static Siren, Author’s Certificate, Book 74d, 301, No. 132102 (1959).Google Scholar
  51. 51.
    M. L. Varlamov, G. A. Manakin, and K. K. Belenavichus, Investigation of the GS-8 acoustic gas-jet generator, Nauchnye Zap. OPI, Odessa, No. 37, p. 60 (1962).Google Scholar
  52. 52.
    M. L. Varlamov, G. A. Manakin, and A. N. Gospodinov, Investigation of an improved high-power acoustic gas-jet generator, Nauchnye Zap. OPI, Odessa, No. 37, p. 31 (1962).Google Scholar
  53. 53.
    Yu. Ya. Borisov, V. N. Ginin, and N. M. Gynkina, Development and investigation of the GSI-4 stem-jet generator, Akust. Zh., 11 (2): 140 (1965).Google Scholar
  54. 54.
    M. J. Palme, Contribution à l’étude de la sirène de Hartmann [Contribution to the investigation of the Hartmann siren], Nuovo Cimento, Suppl. 7(9)(2): 260 (1960).Google Scholar
  55. 55.
    J. Litsios, Industrial application of gas-jet sonic generators, Trans. IEEE Ultrasonic Eng., 10 (2): 91 (1963).CrossRefGoogle Scholar
  56. 56.
    A. E. Crawford, Ultrasonic Engineering with Particular Reference to High Power Applications, London (1955).Google Scholar
  57. 57.
    K. Brückman, Ultraschall Generator fur gasförmige Media [Ultrasonic generator for gaseous media], Chemie Ingenieur-Technik, 25 (8/9): 492 (1953).CrossRefGoogle Scholar
  58. 58.
    B. Letniak, Some constructional problems of ultrasonic generators, Proc. Second Conf. on Ultrasonics, Warsaw (1957), p. 59.Google Scholar
  59. 59.
    M. L. Varlamov, G. A. Manakin, and A. N. Gospodinov, Gas-Jet Sonic Generator, Author’s Certificate, Book 74d, 301, No. 140278 (1960).Google Scholar
  60. 60.
    R. Wellenstein, Device for Production of Sound Vibrations of Definite Frequency by Means of a Pipe or Whistle, US Patent, Book 116–137, No. 2238668 (1941).Google Scholar
  61. 61.
    B. A. Andrews, Ultrasonic garage-door opener, Electronics, 20 (3): 116 (1947).Google Scholar
  62. 62.
    G.I. Birger and V. Yu. Kaganov, Mechanical Ultrasonic Generator, Author’s Certificate, Book 74d, 301, No. 100434 (1954).Google Scholar
  63. 63.
    P. N. Kubanskii, Ultrasonic Generator, Author’s Certificate, Book 74d, 301, No. 72931 (1946).Google Scholar
  64. 64.
    J. Hartmann and E. Trundso, Synchronization of air-jet generators with an ap- pendix on the stem generator, Dann. Mat. Fys. Medd., 26 (10): 2 (1951).Google Scholar
  65. 65.
    R. I. Shkolnikova, Development and investigation of static sirens. Collection of Ultrasonic Energy, Moscow (1960), p. 117.Google Scholar
  66. 66.
    C. H. Sherman, Acoustic interactions in arrays of transducers, IEEE Internat. Convent. Rec., 13 (11): 52 (1965).MathSciNetGoogle Scholar
  67. 67.
    R. M. G. Boucher and E. Brun, Research on the “multiwhistle” acoustic air-jet generator, Engineer’s Digest, 17 (12): 511 (1956).Google Scholar
  68. 68.
    V. P. Kurkin, The mechanism of sound generation in a gas-jet sound radiator, Akust. Zh., 10 (2): 191 (1964).Google Scholar
  69. 69.
    P. Greguss, The application of airborne and liquidborne sounds to industrial technology, Ultrasonics, 2 (1): 5 (1964).CrossRefGoogle Scholar
  70. 70.
    M. L. Varlamov, G. A. Manakin, and K. K. Belenavichus, Calculation of the energy coefficients of acoustic gas-jet generators, Nauchnye Zap. OPI, Odessa, No. 37, p. 76 (1962).Google Scholar
  71. 71.
    Yu. Ya. Borisov, Comparative evaluation of high-power aerodynamic radiators. Collection: Sources of Ultrasonic Energy, Moscow (1960), p. 130.Google Scholar
  72. 72.
    A. Ferri, Elements of Aerodynamics of Supersonic Flows, Macmillan, New York (1949).zbMATHGoogle Scholar
  73. 73.
    Yu. Ya. Borisov and N. M. Gynkina, Investigation of the frequency characteristics of stem-type gas-jet generators. Collection: Physics of Aerodynamic Noise, Ld. Nauka, Moscow (1966).Google Scholar
  74. 74.
    R. A. Saenger and G. E. Hudson, Periodic shock waves in resonating gas columns, J. Acoust. Soc. Am., 32 (8): 961 (1960).CrossRefGoogle Scholar
  75. 75.
    R. Betchov, Nonlinear oscillations of a column of gas, Phys. Fluids, 1 (3): 205 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1): 44 (1964).zbMATHCrossRefGoogle Scholar
  77. 77.
    Yu. Ya. Borisov and V. N. Ginin, Stem-Jet Generator of Acoustic Energy, Author’s Certificate, Book 74d, 301, No. 161651 (1964).Google Scholar
  78. 78.
    W. K. Fortman, Liquid Fuel Propellant. US Patent, Book 116–137, No. 3117551 (1964).Google Scholar
  79. 79.
    Branson introduces pneumatic sound generator, Ultrasonic News, 6(4): 19 ( 1962. 63 ).Google Scholar
  80. 80.
    W. K. Fortman and N. C. Pickering, Sonic Signaling Device, US Patent, Book 116–137, No. 3125986 (1962).Google Scholar
  81. 81.
    N. S. Lamekin, Fundamentals of the theory of liquid fuel injection with a gas-jet generator, Izv. Vuzov, Ser. “Mashinostroenie,” No. 11 (1960).Google Scholar
  82. 82.
    N. S. Lamekin, Method of calculating the gap of a liquid fuel injection generator, Izv. Vuzov, Ser. “Mashinostroenie,” No. 10, p. 114 (1961).Google Scholar
  83. 83.
    L. Ehret and H. Hahnemann, Ein neur Schall-und Ultraschallgeber zur Erzeugung starker Intensitäten in Gasen [A new sonic and ultrasonic generator for the production of high intensities in gases], Z. Tech. Physik, 22 (10): 245 (1942).Google Scholar
  84. 84.
    R. Kling and J.’Grabol, Sur la production d’ultrasons au moyen de jets gazeux [Generation of ultrasound by means of gas jets], Compt. Rend., 229 (23): 1209 (1949).Google Scholar
  85. 85.
    J. Hartmann and F. Larris, Air-jet generator as a means for setting up waves in a liquid medium, Dann. Mat. Fys. Medd., 26 (1): 1 (1951).Google Scholar
  86. 86.
    V. V. Kamenkovich, K. Z. Grudskii, and Yu. Ya. Borisov, Investigation of the air flow in the GSI-4 sound generator, Ul’trazvukovaya Tekhnika, TsINTIAM, No. 2, p. 22 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Yu. Ya. Borisov

There are no affiliations available

Personalised recommendations