RNA Binding by Members of the 70-kDa Family of Molecular Chaperones

  • Christine Zimmer
  • Eszter Nagy
  • John Subjeck
  • Tamás Henics
Part of the Endocrine Updates book series (ENDO, volume 16)

Abstract

Research on heat shock and other stress proteins (hsps) has revealed a number of intriguing aspects about this remarkable class of molecules. First, hsps are highly abundant proteins in cells even under non-stress conditions. This abundance holds for virtually all organisms or cell types examined. Second, hsps are the most phylogenetically conserved proteins known to biology with an overall primary amino acid sequence homology of some 50 % between Escherichia coli and man. Third, hsps have been implicated in a myriad of cellular processes throughout the years. Although the majority of these biological functions delineate hsps as molecular chaperones, recent evidence suggests that certain heat shock proteins possess a likely ancient, evolutionarily conserved role pointing beyond their classical chaperoning function. This chapter deals with a recently described novel feature of the mammalian 70-kDa super-family of molecular chaperones (hsp70, hsc70, hsp110 and grp170), their inherent RATA binding properties. The monograph highlights the RATA sequence preference as well as the RNA-binding domain of these proteins. The influence of ATP and a peptide substrate on RNA-binding —all key components in chaperoning function- will also be detailed. Although the data were obtained using both hsp/hsc70 and hsp110 as the RATA binding partner, since most of the supporting evidence deals with hsp70/hsc70, discussions of possible in vivo functions will mainly be extended to these widely characterized stress proteins.

Keywords

Heat Shock Protein Molecular Chaperone Stress Protein ATPase Domain mRNA Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glick, B. S. (1995) Can Hsp70 proteins act as force-generating motors? Cell, 80: 11–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Craig, E. A., Gambill, B. D., and Nelson, R. J. (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev., 57: 402–414.PubMedGoogle Scholar
  3. 3.
    Rutherford, S. L., and Zuker, C. S. Protein folding and the regulation of signaling pathways. (1994) Cell, 79: 1129–1132.PubMedCrossRefGoogle Scholar
  4. 4.
    Bukau, B., and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell, 92: 351–366.PubMedCrossRefGoogle Scholar
  5. 5.
    Hart!, F. U. (1996) Molecular chaperones in cellular protein folding. Nature, 381: 571–579.CrossRefGoogle Scholar
  6. 6.
    Johnson, J. L., and Craig, E. A. (1997) Protein folding in vivo: unraveling complex pathways. Cell, 90: 201–204.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee-Yoon, D., Easton, D., Murawski, M., Burd, R. and Subjeck, J. R. (1995) Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J. Biol. Chem., 270: 15725–15733.PubMedCrossRefGoogle Scholar
  8. 8.
    Easton, D.P., Kaneko, Y. and Subjeck, J.R. The hsp110 and grp170 stress proteins: Newly recognized relatives of the hsp70s. Cell Stress and Chaperones,in press.Google Scholar
  9. 9.
    Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. and Hendrickson, W. A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272: 1606–1614.PubMedCrossRefGoogle Scholar
  10. 10.
    Oh, H.J., Easton, D.P., Murawski, M. Kaneko, Y. and Subjeck, J.R. The chaperoning activity of hsp110: Identification of functional domains by use of targeted deletions. J. Biol. Chem., 274: 15712–15718.Google Scholar
  11. 11.
    Oh, H. J., Chen, X. and Subjeck, J. R. (1997) hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J. Biol. Chem., 272: 31636–31640.Google Scholar
  12. 12.
    Chen, X., Easton, D., Oh, H. J., Lee-Yoon, D., Liu, X. and Subjeck, J. (1996) The 170 kDa glucose regulated stress protein is a large HSP70-, HSP110-like protein of the endoplasmic reticulum. FEBS Lett., 380: 68–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Ruggero, D., Ciammaruconi, A. and Londei, P. (1998) The chaperonin of the archaeon, Sulfolobus solfataricus is an RNA-binding protein that participates in ribosomal RNA processing. EMBO J., 17: 3471–3477.PubMedCrossRefGoogle Scholar
  14. 14.
    Török, Zs., Horvath, I., Goloubinoff, P., Kovacs, E., Glatz. A., Balogh, G. and VIgh, L. (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc. Natl. Acad. Sci. USA, 94: 2192–2197.Google Scholar
  15. 15.
    Wells, D. R., Tanguay, R. L., Le, H. and Gallie, D. R. (1998) Hsp101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Develop., 12: 3236–3251.PubMedCrossRefGoogle Scholar
  16. 16.
    Sohlberg, B., Lundberg, U., Hartl, F-U. and von Gabain, A. (1993) Functional interaction of heat shock protein GroEL with an RNase E-like activity in Escherichia coli. Proc. Natl. Acad. Sci. USA, 90: 277–281.CrossRefGoogle Scholar
  17. 17.
    Georgellis, D., Sohlberg, B., Hartl, F-U. and von Gabain, A. (1995) Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli. Molec. Microbiol., 16: 1259–1268.CrossRefGoogle Scholar
  18. 18.
    Miczak, A., Kaberdin, V. R., Wei, C-L. and Lin-Chao, S. (1996) Proteins associated with Rnase E in a multicomponent ribonucleolytic complex. Proc. Natl. Acad. Sci. USA, 93: 3865–3869.CrossRefGoogle Scholar
  19. 19.
    DiDomenico, B. J., Bugaisky, G. E. and Lindquist, S. (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell, 31: 593603.Google Scholar
  20. 20.
    Simcox, A. A., Cheney, C. M., Hoffman, E. P. and Shearn, A. (1985) A deletion of the 3’ end of the Drosophila melanogaster hsp70 gene increases stability of mutant mRNA during recovery from heat shock. Mol. Cell. Biol., 5: 3397–3402.PubMedGoogle Scholar
  21. 21.
    Theodorakis, N. G. and Morimoto, R. (1987) Posttranscriptional regulation of hsp70 expression in human cells: Effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol. Cell. Biol., 7: 4357–4368.PubMedGoogle Scholar
  22. 22.
    Yost, H. J., Petersen, R. B. and Lindquist, S. (1990) Posttranscriptional regulation of heat shock protein synthesis in Drosophila. In: Stress proteins in biology and medicine. Ed by D. Pauli and A. Tissières. pp 379–409.Google Scholar
  23. 23.
    Wilhelm, M. L., Reinholt, J., Gangloff, J., Dirheimer, G. and Wilhelm, F. X. (1994) Transfer RNA binding protein in the nucleus of Saccharomyces cerevisiae. FEBS Lett., 349: 260–264.CrossRefGoogle Scholar
  24. 24.
    Scandurro, A. B., Rondon, I. J., Wilson, R. B., Tenenbaum, S. A., Garry, R. and Beckman, B. (1997) Interaction of erythropoetin RNA binding protein with erythropoetin RNA requires an association with heat shock protein 70. Kidney Internatl., 51: 579–584.CrossRefGoogle Scholar
  25. 25.
    Laroia, G., Cuesta, R., Brewer, G. and Schneider, R. J. (1999) Control of mRNA decay by heat shock-ubiquitin-degradosome pathway. Science, 284: 499–502.PubMedCrossRefGoogle Scholar
  26. 26.
    Malter, J. S. (1989) Identification of an AUUUA-specific messenger RNA binding protein. Science, 246: 664–666.PubMedCrossRefGoogle Scholar
  27. 27.
    Henics, T., Sanfridson, A., Hamilton, B. J., Nagy, E. and Rigby, W. F. C. (1994) Enhanced stability of interleukin-2 in MLA 144 cells: Possible role of cytoplasmic AU-rich sequence binding proteins. JBiol. Chem., 269: 5377–5383.Google Scholar
  28. 28.
    SoOs, H., Bujaky, Cs., Kiss, A., Kovacs, É., Somoskeöy, Sz. and Henics, T. (1998) Distribution profile and in vivo RNA association of cytoplasmic AU-rich sequence binding proteins in various mammalian cells: effect of the organizational state of cellular architecture. Physiol. Chem. Phys. Med. NMR., 30: 163–174.PubMedGoogle Scholar
  29. 29.
    Henics, T., Nagy, E., Oh, H. J., Csermely, P., von Gabain, A. and Subjeck, J. R. (1999) Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. JBiol. Chem., 274: 17318–17324.CrossRefGoogle Scholar
  30. 30.
    Chen, C.-Y. A. and Shyu, A.-B. (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci., 20: 465–470.PubMedCrossRefGoogle Scholar
  31. a. Zimmer, C., von Gabain, A. and Henics, T. (2001) Analysis of sequence-specific binding of RNA to Hsp70 and its various homologues indicates the involvement of Nand C-terminal interactions. RNA, in press.Google Scholar
  32. 31.
    Nagy, E., Henics, T., Eckert, M., Miseta, A., Lightowlers, R. N. and Kellermayer, M. (2000) Identification of the NAD+-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun., 275: 253–260.PubMedCrossRefGoogle Scholar
  33. 32.
    Liberek, K., Skowyra, D., Zylicz, M., Johnson, C. and Georgopoulos, C. (1991) The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. JBiol. Chem., 266: 14491–14496.Google Scholar
  34. 33.
    Buchberger, A., Theyssen, H., Schröder, H., McCarty, J. S., Virgallita, J., Milkereit, P., Reinstein, J. and Backau, B. (1995) Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. JBiol. Chem., 270: 16903–16910.CrossRefGoogle Scholar
  35. 34.
    Fung, K. L., Hilgenberg, L., Wang, N. M. and Chirico, W. J. (1996) Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. J. Biol. Chem., 271: 21559–21565.PubMedCrossRefGoogle Scholar
  36. 35.
    James, P., Pfund, C. and Craig, E. A. (1997) Functional specificity among Hsp70 molecular chaperones. Science, 275: 387–389.PubMedCrossRefGoogle Scholar
  37. 36.
    Lopez-Buesa, P., Pfund, C. and Craig, E. A. (1998) The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains. Proc. Natl. Acad. Sci. USA, 95: 15253–15258.PubMedCrossRefGoogle Scholar
  38. 37.
    Davis, J. E., Voisine, C. and Craig, E. A. (1999) Intragenic suppressors of Hsp70 mutants: Interplay between the ATPase-and peptide-binding domains. Proc. Natl. Acad. Sci. USA, 96: 9269–9276.PubMedCrossRefGoogle Scholar
  39. 38.
    Morshauser, R. C., Wang, H., Flynn, G. C. and Zuiderweg, E. R. P. (1995) The peptide-binding domain of the chaperone protein Hsc70 has an unusual secondary structure topology. Biochemistry, 34: 6261–6266.PubMedCrossRefGoogle Scholar
  40. 39.
    Sheterline, P., Clayton, J. and Sparrow, J. C. (1996) Actin structure in Actins, 3`d Edition, Academic Press, Ltd. pp 15–51.Google Scholar
  41. 40.
    Henics, T., Nagy, E. and Szekeres-Barthó, J. (1997) Interaction of AU-rich sequence binding proteins with actin: Possible involvement of the actin-cytoskeleton in lymphokine mRNA turnover. J Cell. Physiol., 173: 19–27.PubMedCrossRefGoogle Scholar
  42. 41.
    Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. and Craig, E. A. (1992) The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell, 71: 97–105.PubMedCrossRefGoogle Scholar
  43. 42.
    Pfund, C., Lopez-Hoyo, N., Ziegelhoffer, T., Schilke, B. A., Lopez-Buesa, P., Walter, W. A., Wiedmann, M. and Craig, E. A. (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nescent chain complex. EMBO J., 17: 3981–3989.PubMedCrossRefGoogle Scholar
  44. 43.
    Beck, S. C. and De Maio, A. (1994) Stabilization of protein synthesis in thermotolerant cells during heat shock. J. Biol. Chem., 269: 21803–21811.PubMedGoogle Scholar
  45. 44.
    Yan, W., Schilke, B., Pfund, C., Walter, W., Kim, S. and Craig, E. A. (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J., 17: 4809–4817.PubMedCrossRefGoogle Scholar
  46. 45.
    Uma, S., Thulasiraman, V. and Matts, R. L. (1999) Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the oc subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol., 19: 5861–5871.PubMedGoogle Scholar
  47. 46.
    Horton, L.E., James, P., Craig, E.A., and Hensold, J.O. (2001) The yeast hsp70 homologue Ssa is required for translation and interacts with Sisl and Pab1 on translating ribosomes. J Biol Chem 276: 14426–14433.PubMedGoogle Scholar
  48. 47.
    Wang, X-Y., Chen, X., Oh, H. J., Repsky, E., Kazim, L. and Subjeck, J. (2000) Characterization of native interaction of hsp110 with hsp25 and hsc70. FEBS Lett., 465: 98–102.PubMedCrossRefGoogle Scholar
  49. 48.
    Zhang, S., Williams, C. J., Hagan, K. and Peltz, S. W. (1999) Mutations in VPS16 and MRTI stabilize mRNAs by activating an inhibitor of the decapping enzyme. Mol. Cell. BioL, 19: 7568–7576.PubMedGoogle Scholar
  50. 49.
    Meacham, G. C., Browne, B. L., Zhang, W., Kellermayer, R., Bedwell, D. M. and Cyr, D. M. (1999) Mutations in the yeast Hsp40 chaperone protein Ydjl cause defects in Axll biogenesis and pro-a-factor processing. JBiol. Chem., 274: 34396–34402.CrossRefGoogle Scholar
  51. 50.
    Moseley, P. L., Wallen, E. S., McCafferty, J D., Flanagan, S and Kern, J. A. (1993) Heat stress regulates the human 70-kDa heat-shock gene through the 3’-untranslated region. Am. J. Physiol., 264: L533–537.PubMedGoogle Scholar
  52. 51.
    Brennecke, T., Gellner, K. and Bosch, T. C. G. (1998) The lack of a stress response in Hydra oligactis is due to reduced hsp70 mRNA stability. Eur. J. Biochem., 255: 703709.Google Scholar
  53. 52.
    Lee, M. G-S. (1998) The 3’ untranslated region of the hsp 70 genes maintains the level of steady state mRNA in Trypanosoma brucei upon heat shock. Nucl. Acids Res., 26: 4025–4033.PubMedCrossRefGoogle Scholar
  54. 53.
    Kaarniranta, K., Elo, M., Sironen, R., Lammi, M. J., Goldring, M. B., Erikson, J. E., Sistonen, L. and Helminen, H. J. (1998) Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc. Natl. Acad. Sci., 95: 2319–2324.PubMedCrossRefGoogle Scholar
  55. 54.
    Spicher, A., Guicherit, O. M., Duret, L., Aslanian, A., Sanjines, E. M., Denim, N. C., Giaccia, A. J. and Blau, H. M. (1998) Highly conserved RNA sequences that are sensors of environmental stress. Mol. Cell. Biol., 18: 7371–7382.PubMedGoogle Scholar
  56. 55.
    Korber, P., Zander, T., Herschlag, D. and Bardwell, J. C. A. (1999) A new heat shock protein that binds nucleic acids. JBiol. Chem., 274: 249–256.CrossRefGoogle Scholar
  57. 56.
    Korber, P., Stahl, J. M., Nierhaus, K. H. and Bardwell, J. C. A. (2000) Hsp15: a ribosome-associated heat shock protein. EMBO J., 19: 741–748.PubMedCrossRefGoogle Scholar
  58. 57.
    Staker, B. L., Korber, P., Bardwell, J. C. A. and Saper, M. (2000) Structure of Hsp15 reveals a novel RNA-binding motif. EMBO J., 19: 749–757.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Christine Zimmer
    • 1
  • Eszter Nagy
    • 1
  • John Subjeck
    • 2
  • Tamás Henics
    • 1
  1. 1.INTERCELLViennaAustria
  2. 2.Roswell Park Cancer Inst.BuffaloUSA

Personalised recommendations