Advertisement

On the Structure, Dynamics and Possible Functional Roles of Inverted Micelles in Biological Membranes

  • Mauricio Montal
Chapter
Part of the Forschung Soziologie book series

Abstract

In the past few years, we have focused our studies on the structure/function correlates in membrane receptor proteins. At the core of this endeavor reside the fundamental consequences of the interaction between the different membrane constituents namely proteins, phospholipids, counter ions, and water. The distinct modalities of the structure and function of biological membranes arise from the dynamics and stability of the interactions between these distinct components.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    C. Tanford (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York, Wiley-Interscience, 2nd Ed.Google Scholar
  2. 2.
    M. Montal, Ann. Rev. Biophys. Bioengineer 5: 119 (1976).CrossRefGoogle Scholar
  3. 3.
    G.H.A. Clowes, J. Phys. Chem. 20: 407 (1916).CrossRefGoogle Scholar
  4. 4.
    A. Gemant, Ions in Hydrocarbons. New York, Wiley, pp. 261 (1962).Google Scholar
  5. 5.
    J. Smid, Angew. Chem. Int. Ed. Engl. 11: 112 (1972).CrossRefGoogle Scholar
  6. 6.
    P.K. Ludwig, J. Chem. Phys. 50: 1787 (1969).CrossRefGoogle Scholar
  7. 7.
    M. Montal, A. Darszon and H. Schindler, Quart. Rev. Biophys. 14: 1 (1981).CrossRefGoogle Scholar
  8. 8.
    M. Montal, In: Perspectives in Membrane Biology (ed. S. Estrada-O and C. Gitler). New York, Academic Press, pp. 591–622 (1974).Google Scholar
  9. 9.
    A. Darszon, M. Philipp, J. Zarco and M. Montal, J. Membrane Biol. 43: 71 (1978).CrossRefGoogle Scholar
  10. 10.
    A. Darszon, C.A. Vandenberg, M. Schönfeld, M.H. Ellisman, N.C. Spitzer and M. Montal, Proc. Natl. Acad. Sci. USA 77: 239 (1980).CrossRefGoogle Scholar
  11. 11.
    S.-B. Hwang, J.I. Korenbrot and W. Stoeckenius, J. Membrane Biol. 36: 115 (1977).CrossRefGoogle Scholar
  12. 12.
    E. Bamberg, N.A. Dencher, A. Fahr and M.P. Heyn, Proc. Natl. Acad. Sci. USA 78: 7502 (1980).Google Scholar
  13. 13.
    M. Schönfeld, M. Montal and G. Feher, Biochemistry, N.Y. 19: 1535 (1980).CrossRefGoogle Scholar
  14. 14.
    M.W. Kendall-Tobias, H. Celis, S.A. Celis and A.R. Crofts, Biochim. Biophys. Acta 6535: 585 (1981).CrossRefGoogle Scholar
  15. 15.
    N.K. Packham, C. ackham, P. Mueller, D.M. Tiede and P.L. Dutton, FEBS Lett. 110: 101 (1980).CrossRefGoogle Scholar
  16. 16.
    A. Darszon, R. Strasser and M. Montal, Biochemistry N.Y. 18: 5205 (1979).CrossRefGoogle Scholar
  17. 17.
    V.R. Ramakrishnan, A. Darszon and M. Montal, J. Biol. Chem. 258: 4857 (1983).Google Scholar
  18. 18.
    D.O. Shah and J.H. Schulman, J. Colloid Interface Sci. 25: 107 (1967).CrossRefGoogle Scholar
  19. 19.
    H.L. Rosano, J.H. Schulman and J. Weisbuch, Ann. N.Y. Acad. Sci. 92: 457 (1961).CrossRefGoogle Scholar
  20. 20.
    M.P. Blaustein and D.E. Goldman, J. Gen. Physiol. 49: 1043 (1966).CrossRefGoogle Scholar
  21. 21.
    J.H. Moore and R.S. Schechter, Nature (London) 222: 476 (1969).CrossRefGoogle Scholar
  22. 22.
    D.E. Green, M. Fry and G.A. Blondin, Proc. Natl. Acad. Sci. USA 77: 257 (1980).CrossRefGoogle Scholar
  23. 23.
    H. McIlwain, Biochem. J. 78: 24 (1961).Google Scholar
  24. 24.
    M.W. Spence, Can. J. Biochem. 47: 735 (1969).CrossRefGoogle Scholar
  25. 25.
    A. Sen, W.P. Williams, A.P.R. Brain, M.S. Dickens and P.J. Quinn, Nature (London) 293: 488 (1981).CrossRefGoogle Scholar
  26. 26.
    B. de Kruijff, et al., Biochim. Biophys. Acta 555: 200 (1979).CrossRefGoogle Scholar
  27. 27.
    B. de Kruijff, P.R. Cullis and A.J. Verkleij, Trends Biochem. Sci. 5: 79 (1980).CrossRefGoogle Scholar
  28. 28.
    A.J. Verkleij, C. Mombers, W.J. Gerritson, J. Leunissen-Bihuelt and P.R. Cullis, Biochim. Biophys. Acta 555: 358 (1979).CrossRefGoogle Scholar
  29. 29.
    A.J. Verkleij, C. Members, J. Leunissen-Bijuelt and P.H.J. Th. Ververgaert, Nature (London) 279: 162 (1979).CrossRefGoogle Scholar
  30. 30.
    P.R. Cullis and M.J. Hope, Nature (London) 271: 672 (1978).CrossRefGoogle Scholar
  31. 31.
    P.R. Cullis, B. de Kruijff, M.J. Hope, R. Nayar and S.L. Schmid, Can. J. Biochem. 58: 1091 (1980).CrossRefGoogle Scholar
  32. 32.
    B. Kachar and T.S. Reese, Nature (London) 296: 464 (1982).CrossRefGoogle Scholar
  33. 33.
    L.A. Staehelin, Int. Rev. Cytol. 39: 191 (1974).CrossRefGoogle Scholar
  34. 34.
    R.H. Michel, Trends Biochem. Sci. 4: 128 (1979).CrossRefGoogle Scholar
  35. 35.
    R.H. Michel, Nature (London) 296: 492 (1982).CrossRefGoogle Scholar
  36. 36.
    J.W. Putney, Life Sci. 29: 1183 (1981).CrossRefGoogle Scholar
  37. 37.
    J.N. Hawthorne, Nature (London) 295: 281 (1982).CrossRefGoogle Scholar
  38. 38.
    C.A. Vandenberg and M. Montal, Biophys. J. 37: 195a (1982).CrossRefGoogle Scholar
  39. 39.
    J.J. Donovan, M.I. Simon and M. Montal, Nature (London) 298: 669 (1982).CrossRefGoogle Scholar
  40. 40.
    W.E. Van Heyningen, J. Gen. Microbial. 31: 375 (1963).CrossRefGoogle Scholar
  41. 41.
    H. Borochov-Neori, U. Staerz, E. Yavin and M. Montal, Biophys. J. 41: 381a (1983).CrossRefGoogle Scholar
  42. 42.
    From Ramakrishnan, Darszon and Montal (1983), reproduced with permission of the American Society of Biological Chemists, Inc.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Mauricio Montal
    • 1
  1. 1.Departments of Biology and PhysicsUniversity of California San DiegoLa JollaUSA

Personalised recommendations