Advertisement

13C NMR Studies of Molecular Conformations and Interactions in the Curved Surfactant Monolayers of Aerosol OT Water-in-Oil Microemulsions

  • L. J. Magid
  • C. A. Martin
Chapter
Part of the Forschung Soziologie book series

Abstract

Carbon-13 NMR data for Aerosol OT reversed micelles and water-in-oil microemulsions are used to elucidate hydrocarbon chain dynamics and rotational isomerism. Evidence is presented that benzene and carbon tetrachloride penetrate the surfactant interphase to a greater extent than cyclohexane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    H.F. Eicke, Top. Current Chem., 87: 86 (1980) and references therin.Google Scholar
  2. 2. a.
    K. Kon-no and A. Kitahara, J. Colloid Interface Sci., 35: 636 (1971).CrossRefGoogle Scholar
  3. 2. b.
    P. Ekwall, L. Mandell and K. Fontell, ibid., 33 215 (1970).CrossRefGoogle Scholar
  4. 2. c.
    M. Wong, J.K. Thomas and M. Grätzel, J. Am. Chem. Soc., 98: 2391 (1976).CrossRefGoogle Scholar
  5. 2. d.
    J. Sunamoto, T. Hamade, T. Seto and S. Yamamoto, Bull. Chern. Soc. Jpn. 53: 583 (1980).CrossRefGoogle Scholar
  6. 3. a.
    L.J. Magid, K. Kon-no and C. Martin, J. Colloid Interface Sci., 83: 307 (1981).CrossRefGoogle Scholar
  7. 3. b.
    H. Kuneida and K. Shinoda, ibid., 70: 577 (1979).CrossRefGoogle Scholar
  8. 3. c.
    S.M.F. Tavernier and R. Gijbels, Talanta, 28: 221 (1981).CrossRefGoogle Scholar
  9. 4. a.
    M. Zulauf and H.F. Eicke, J. Phys. Chem., 83: 480 (1979).CrossRefGoogle Scholar
  10. 4. b.
    H.F. Eicke, Pure Appl. Chem., 53: 1417 (1981).CrossRefGoogle Scholar
  11. 4. c.
    R. Kubik, H.F. Eicke and B. Jönsson, Helv. Chim. Acta, 65: 170 (1982).CrossRefGoogle Scholar
  12. 5.
    A.N. Maitra and H.F. Eicke, J. Phys. Chem., 85: 2687 (1981).CrossRefGoogle Scholar
  13. 6. a.
    M. Ueno, H. Kishimoto and Y. Kyogoku, Chem. Lett., 599 (1977).Google Scholar
  14. 6. b.
    M. Ueno, H. Kishimoto and Y. Kyogoku, J. Colloid Interface Sci., 63: 113 (1978).CrossRefGoogle Scholar
  15. 7.
    As drawn, these molecules may be described as having the L configuration at c1 and C2 respectively.Google Scholar
  16. 8.
    H. Hauser, W. Guyer, P. Skrabal and S. Sundell, Biochemistry, 19: 366 (1980).CrossRefGoogle Scholar
  17. 9.
    See M. Sundaralingam, Annals N.Y. Acad. Sci., 195: 324 (1972) for more information on this type of nomenclature.CrossRefGoogle Scholar
  18. 10. a.
    M.F. Roberts, A.A. Bothner-By and E.A. Dennis, Biochemistry, 17: 935 (1978) and references therein.CrossRefGoogle Scholar
  19. 10. b.
    J. DeBony and E.A. Dennis, ibid., 20: 5256 (1981).CrossRefGoogle Scholar
  20. 11.
    P.B. Hitchcock, R. Mason, K.M. Thomas and G.G. Shipley, Proc. Natl. Acad. Sci., 71: 3036 (1974).CrossRefGoogle Scholar
  21. 12.
    A. Seelig and J. Seelig, Biochemistry, 13 4839 (1974)CrossRefGoogle Scholar
  22. 12. a.
    A. Seelig and J. Seelig, Biochim. Biophys. Acta, 406: 1 (1975).CrossRefGoogle Scholar
  23. 13.
    C.A. Martin and L.J. Magid, J. Phys. Chem., 85: 3938 (1981).CrossRefGoogle Scholar
  24. 14.
    G.E. Maciel and J.J. Natterstad, J. Chem. Phys., 42: 2752 (1965).CrossRefGoogle Scholar
  25. 15.
    C.F. Schmidt, Y. Barenholz, C. Huang and T.E. Thompson, Biochemistry, 16: 3948 (1977).CrossRefGoogle Scholar
  26. 16.
    R.E. London and J. Avitabile, J. Am. Chem. Soc., 99: 7765 (1977).CrossRefGoogle Scholar
  27. 17.
    L.M. Prince, In “Emulsions and Emulsion Technology”, K.J. Lissant, Ed.; Marcel Dekker: New York, 1974.Google Scholar
  28. 17. a.
    L.M. Prince, In “Emulsions and Emulsion Technology”, K.J. Lissant, Ed. 1974; Vol. 6, pp. 125–177.Google Scholar
  29. 18.
    rh is taken from Ref. 4a; Aw from H.F. Eicke, J. Rehak, Helv. Chim. Acta, 59: 2883 (1976).CrossRefGoogle Scholar
  30. 19.
    E. Keh and B. Valeur, J. Collid Interface Sci., 79: 465 (1981).CrossRefGoogle Scholar
  31. 20.
    R.A. Day, B.H. Robinson, J.H.R. Clarke and J.V. Doherty, J. Chem. Soc., Faraday Trans. 1, 75: 132 (1979).CrossRefGoogle Scholar
  32. 21.
    E. Gulari, B. Bedwell and S. Alkahafaji, J. Colloid Interface Sci., 77: 202 (1980).CrossRefGoogle Scholar
  33. 22.
    Note that the assumption that τeff increases as T1 increases means that (ωC + ωH)2 τ2 ≥1. See D. Doddrell, V. Glushko and A. Allerhand, J. Chem. Phys., 56: 3683 (1972)CrossRefGoogle Scholar
  34. 23.
    P. Devaux and H.M. McConnell, J. Am. Chem. Soc., 94: 4475 (1972).CrossRefGoogle Scholar
  35. 24.
    G. Levy, M.P. Cordes, J.S. Lewis and D.E. Axelson, J. Am. Chem. Soc., 99: 5492 (1977).CrossRefGoogle Scholar
  36. 25.
    H.F. Eicke and H. Christen, J. Colloid Interface Sci., 48: 281 (1974).CrossRefGoogle Scholar
  37. 26.
    F.M. Menger and G. Saito, J. Am. Chem. Soc., 100: 4374 (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • L. J. Magid
    • 1
  • C. A. Martin
    • 1
  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations