Aggregation States and Dynamics of Nonionic Polyoxyethylene Surfactants

  • Anthony Ribeiro
Part of the Forschung Soziologie book series


The nonionic polyoxyethylene ether (POE) surfactants exhibit solvent dependent aggregation states1,2 . Solvents with two or more potential hydrogen bonding centers like ethylene glycol3 and form-amide4– 6 promote micelle formation similar to that in water. In contrast, in aliphatic hydrocarbon solvents, such as cyclohexane or decane, reverse (or inverted) micelles may form2,7. However, polar solvents with a single hydrogen bonding center do not appear to support micelle formation4 , and several reports describe the destruction of micelles by the lower alcohols, ethanol and methanol8,11.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.C. Kresheck, “Water: A Comprehensive Treatise Vol. 4. Aqueous Solutions of Amphiphiles and Macromolecules”, F. Franks, ed., Plenum Press, New York (1975).Google Scholar
  2. 2.
    J.H. Fendler and E.J. Fendler, “Catalysis in Micellar and Macromolecular Systems”, Academic Press, New York (1975).Google Scholar
  3. 3.
    A. Ray and G. Nemethy, J. Phys. Chem. 75: 809 (1971).CrossRefGoogle Scholar
  4. 4.
    A. Ray, Nature (London) 231: 313 (1971).CrossRefGoogle Scholar
  5. 5.
    C. McDonald, J. Pharm. Pharmacal. 22: 148 (1970).CrossRefGoogle Scholar
  6. 6.
    C. McDonald, J. Pharm. Pharmacal. 22: 774 (1970).CrossRefGoogle Scholar
  7. 7.
    P.S. Sheih and J.H. Fendler, J. Chem. Soc. Far. Trans. I 73: 1480 (1977).CrossRefGoogle Scholar
  8. 8.
    M.J. Sasaki and N. Sata, Koll. Z. 199: 49 (1964).CrossRefGoogle Scholar
  9. 9.
    M.J. Schick and A.H. Gilbert, J. Colloid Sci. 20: 464 (1965).CrossRefGoogle Scholar
  10. 10.
    P. Becher, J. Collid Sci. 20: 728 (1965).CrossRefGoogle Scholar
  11. 11.
    P. Becher and S.E. Trifiletti, J. Colloid Interface Sci. 43: 485 (1973).CrossRefGoogle Scholar
  12. 12.
    A.A. Ribeiro and E.A. Dennis, Biochemistry 14: 3746 (1975).CrossRefGoogle Scholar
  13. 13.
    A.A. Ribeiro and E.A. Dennis, J. Phys. Chem. 80: 1746 (1976).CrossRefGoogle Scholar
  14. 14.
    A.A. Ribeiro and E.A. Dennis, J. Phys. Chem. 81: 957 (1977).CrossRefGoogle Scholar
  15. 15.
    C.F. Allen and L.I. Rice, J. Chromatogr. 110: 151 (1975).CrossRefGoogle Scholar
  16. 16.
    R.J. Robson and E.A. Dennis, Biochem. Biophys. Acta 508: 513 (1978).CrossRefGoogle Scholar
  17. 17.
    R.C. Mansfield and J.E. Locke, J. Amer. Oil Chem. Soc. 41: 267 (1964).CrossRefGoogle Scholar
  18. 18.
    R.L. Vold, J.S. Waugh, M.P. Klein and D.E. Phelps, J. Chem. Phys. 48: 3831 (1968).CrossRefGoogle Scholar
  19. 19.
    F. Podo, A. Ray and G. Nernethy, J. Amer. Chem. Soc. 95: 6164 (1973).CrossRefGoogle Scholar
  20. 20.
    T. Nakagawa and F. Tokiwa, “Surface and Colloid Science. Vol.9”, E. Matijevic, ed., John Wiley and Sons, New York (1976).Google Scholar
  21. 21.
    A. Ribeiro, Ph.D. Thesis, University of California San Diego (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Anthony Ribeiro
    • 1
  1. 1.Stanford Magnetic Resonance LaboratoryStanford UniversityStanfordUSA

Personalised recommendations