Advertisement

Investigation of the Ambipolar Diffusion of Free Carriers in Inhomogeneously Photoexcited Zinc Sulfide Crystals

  • N. N. Grigor’ev
  • M. V. Fok
Chapter
Part of the The Lebedev Physics Institute Series book series (LPIS)

Abstract

Several methods, based on an investigation of the luminescence of a crystal, were developed for the determination of the transport processes and their range, The luminescence contour method was used to show that the range of ambipolar diffusion was 5–10 μ, whereas the bulk of the crystal was excited by the reabsorption of the luminescence, A new transport parameter α 0, representing the change in the recombination rate under diffusion conditions and the spatial distribution of the nonequilibrium carrier density, was introduced in a theoretical justification of this method for semiconductors with the quadratic recombination kinetics. Investigations of the influence of the excitation rate, size of the excitation region, long-wavelength background radiation, and an alternating electric field on the spatial distribution of the luminescence excited in a crystal by a narrow strip of light yielded results in good agreement with the theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. E. Lashkarev, Tr. Inst. Fiz. Akad. Nauk Ukr. SSR, No. 3, 3 (1952).Google Scholar
  2. 2.
    G. M. Guro, Usp. Fiz. Nauk, 72: 711 (1960).Google Scholar
  3. 3.
    J. S. Blakemore and K. C. Nomura, J. Appl. Phys. 31: 753 (1960).ADSCrossRefGoogle Scholar
  4. 4.
    S. M. Ryvkin, Photoelectric Effects in Semiconductors, Consultants Bureau, New York (1964).Google Scholar
  5. 5.
    M. V. Fok, Introduction to the Kinetics of the Luminescence of Crystal Phosphors [in Russian], Nauka, Moscow (1974).Google Scholar
  6. 6.
    W. E. Spear, J. Non-Cryst. Solids, 1: 197 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Grigor’ev and M. V. Fok, Kratk. Soobshch. Fiz., No. 2, 19 (1972).Google Scholar
  8. 8.
    C. E. Bleil and J. Broser, Proc. Seventh Intern. Conf. on Physics of Semiconductors, Paris, 1964, Vol. 1, Physics of Semiconductors, pubi. by Dunod, Paris; Academic Press, New York (1964), p. 897.Google Scholar
  9. 9.
    N. N. Grigor’ev and M. V. Fok, Fiz. Tekh. Poluprovodn., 3: 874 (1969).Google Scholar
  10. 10.
    J. S. Blakemore, Semiconductor Statistics, Pergamon Press, Oxford (1962).zbMATHGoogle Scholar
  11. 11.
    E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Vol. 1, Gewöhnliche Differentialgleichungen, Chelsea Publ. Co., New York (1971) [reprint of earlier German edition].Google Scholar
  12. 12.
    É. N. Adirovich, Dokl. Akad. Nauk SSSR, 157: 313 (1964).Google Scholar
  13. 13.
    G. S. Berlin, Prib. Tekh. Eksp., No. 5, 152 (1961).Google Scholar
  14. 14.
    V. V. Osiko and E. I. Panasyuk, Opt. Spektrosk. Sb. 1 Luminestsentsiya (Suppl. 1 Luminescence), 239 (1963).Google Scholar
  15. 15.
    A. V. Lavrov and G. E. Arkhangel’skii, Zh. Fiz. Khim., 44: 297 (1970).Google Scholar
  16. 16.
    M. N. Alentsev and E. I. Panasyuk, Opt. Spektrosk., 5: 207 (1958).Google Scholar
  17. 17.
    N. N. Grigor’ev and M. V. Fok, Proc. Nineteenth Conf. on Luminescence [in Russian], Part II, Riga State University (1970), p. 74.Google Scholar
  18. 18.
    Z. L. Morgenshtern, V. B. Neustruev, and M. I. Épshtein, Zh. Prikl. Spektrosk., 3: 49 (1965).Google Scholar
  19. 19.
    I. K. Vereshchagin, V. G. Khavrunyak, and I. V. Khomyak, in: Electroluminescence of Solids [in Russian], Naukova Dumka, Kiev (1971), p. 148.Google Scholar
  20. 20.
    N. N. Grigor’ev and M. V. Fok, Kratk. Soobshch. Fiz., No. 8, 42 (1971).Google Scholar
  21. 21.
    D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev., 129: 1009 (1963).ADSCrossRefGoogle Scholar
  22. 22.
    Yu. V. Bochkov, A. N. Georgobiani, and G. S. Chilaya, Tr. Fiz. Inst. Akad. Nauk SSSR, 50: 60 (1969).Google Scholar
  23. 23.
    T. S. Reshetina and V. F. Tunitskaya, Zh. Prikl. Spektrosk„ 12: 295 (1970).Google Scholar
  24. 24.
    V. V. Antonov-Romanovskii and L. A. Vinokurov, Opt. Spektrosk., 1: 71 (1956).Google Scholar
  25. 25.
    M. Aven and R. E. Halsted, Phys. Rev, 137: A228 (1965).ADSCrossRefGoogle Scholar
  26. 26.
    M. Aven, Extended Abstracts, Electronics Division Meeting, Electrochemical Society, 11: 46 (1962).Google Scholar
  27. 27.
    K. Era, H. Katayama, and S. Shionoya, J. Phys. Soc. Jap., 24: 1180 (1968).ADSCrossRefGoogle Scholar
  28. 28.
    Ya. A. Oksman and É. E. Zablovskii, Fiz. Tverd. Tela, 6: 1930 (1964).Google Scholar
  29. 29.
    D. Curie, Luminescence in Crystals, Methuen, London (1963).Google Scholar
  30. 30.
    M. Aven and J. S. Prener, Physics and Chemistry of II-VI Compounds, North-Holland, Amsterdam (1967).Google Scholar
  31. 31.
    M. Aven, J. Appl. Phys., 38: 4421 (1967).ADSCrossRefGoogle Scholar
  32. 32.
    M. N. Islam and J. Woods, Solid State Commun., 7: 1457 (1969).ADSCrossRefGoogle Scholar
  33. 33.
    P. G. Le Comber, W. E. Spear, and A. Weinmann, Brit. J. Appl. Phys., 17: 467 (1966)ADSCrossRefGoogle Scholar
  34. 34.
    N. N. Grigor’ev and M. V. Fok, Abstracts of Papers presented at Second Conference on Physics and Chemistry of II-VI Compounds [in Russian], Institute of Physics, Academy of Sciences of the Ukrainian SSR, Kiev (1969), p. 65.Google Scholar
  35. 35.
    V. V. Antonov-Romanovskii, Kinetics of the Photoluminescence of Crystal Phosphors [in Russian], Nauka, Moscow (1966).Google Scholar
  36. 36.
    M. K. Sheinkman, in: Electroluminescence of Solids [in Russian], Naukova Dumka, Kiev (1971), p. 77.Google Scholar
  37. 37.
    N. V. Mitrofanova, Yu. P. Timofeev, S. A. Fridman, and V. V. Shchaenko, Izv. Akad. Nauk SSSR, Ser. Fiz., 35: 1446 (1971).Google Scholar
  38. 38.
    H. Gobrecht and D. Hofmann, J. Chem. Phys. Solids, 27: 509 (1966).ADSCrossRefGoogle Scholar
  39. 39.
    S. S. Batsanov, Electronegativity of Elements and Chemical Bonds [in Russian], Novosibirsk (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • N. N. Grigor’ev
  • M. V. Fok

There are no affiliations available

Personalised recommendations