Some Applications in Algorithmics

  • Jean-François Mari
  • René Schott
Chapter

Abstract

Quicksort is a fast sorting algorithm, widely used for internal sorting. The basic idea is the choice of a partitioning element K. For example, let us consider the integer sequence [Régnier, 1989]: 45, 677, 98, 43, 42, 41, 60, 130, 32, 67 and choose K = 67 as the partitioning element. Scanning the left sublist from left to right, one exchanges any key greater than K with a key of the right sublist, scanned from right to left. This builds a list where K has its final position, all the keys to its left (resp. to its right) being smaller (resp. larger) than K.The intermediate stages are:

45

32

      

677

67

45

32

60

   

98

130

677

67

45

32

60

43

42

41

98

130

677

67

45

32

60

43

42

41

98

130

677

67

Keywords

Markov Chain Voronoi Diagram Priority Queue Binary Search Tree Conflict Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Chauvin et al., 1999]
    Chauvin, B., Drmota, M., and Jabbour-Hattab, J. (1999). The Profile of Binary Search Trees. Technical report, Université de Versailles, France.Google Scholar
  2. [Cerf, 1994]
    Cerf, R. (1994). Une Théorie Asymptotique des Algorithmes Génétiques. PhD thesis, Université Monpellier I I.Google Scholar
  3. [Devillers, 1996]
    Devillers, O. (1996). An Introduction to Randomization in Computational Geometry. Theoretical Comput. Science, 157: 35–52.MathSciNetMATHCrossRefGoogle Scholar
  4. [Jonassen and Knuth, 1978]
    Jonassen, A. and Knuth, D. E. (1978). A Trivial Algorithm Whose Analysis Isn’t. Journal of Computing System Sci., (16):301 – 332.Google Scholar
  5. [Geniet et al., 1996]
    Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.Google Scholar
  6. [Laroche et al., 1999]
    Laroche, P., Charpillet, J., and Schott, R. (1999). Mobile Robotics Planning Using Abstract Markov Decision Processes. pages 299–306. ICTAI’99, IEEE.Google Scholar
  7. [Louchard and Schott, 1991]
    Louchard, G. and Schott, R. (1991). Probabilistic Analysis of Some Distributed Algorithms. Random Structures and Algorithms, (2):151–186.MathSciNetMATHCrossRefGoogle Scholar
  8. [Louchard et al., 1997]
    Louchard, G., Kenyon, C., and Schott, R. (1997). Data Structures Maxima. SIAM J. Comput., (4): 1006–1042.Google Scholar
  9. [Maier, 1991b]
    Maier, R. S. (1991b). Colliding Stacks: A Large Deviations Analysis. Random Structures and Algorithm, (2):379–420.MathSciNetMATHCrossRefGoogle Scholar
  10. [Maier and Schott, 1993a]
    Maier, R. S. and Schott, R. (1993a). Exhaustion of Shared Memory: Stochastic Results. volume 709 of LNCS, pages 494–505. WADS’93, Springer Verlag.Google Scholar
  11. [Maier and Schott, 1993b]
    Maier, R. S. and Schott, R. (1993b). Regular Approximations to Shuffle Products of Context-free Languages, and Convergence of Their Generating Functions. volume 710 of LNCS, pages 352–362. FCT’93, Springer Verlag.Google Scholar
  12. [Régnier, 1989]
    Régnier, M. (1989). A Limiting Theorem for Quicksort. Informatique Théorique et Applications/Theoretical Informatics and Applications, pages 335–343.Google Scholar
  13. [Rhee and Talagrand, 1987]
    Rhee, W. and Talagrand, M. (1987). Martingale Inequalities and NP-complete Problems. Math. Oper. Research, 12 (1): 177–181.MathSciNetMATHCrossRefGoogle Scholar
  14. [Rösler, 1989]
    Rösler, U. (1989). A Limit Theorem for “Quicksort”. Informatique Théorique et Applications/Theoretical Informatics and Applications, 25 (1): 85–100.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jean-François Mari
    • 1
  • René Schott
    • 2
  1. 1.LORIA and Université Nancy 2France
  2. 2.Université Henri Poincaré-Nancy 1France

Personalised recommendations