Adsorption Chromatography: Mechanism and Materials

  • S. G. Perry
  • R. Amos
  • P. I. Brewer


Adsorption may be defined as the concentration of solute molecules at the interface of two immiscible phases. In liquid-solid adsorption chromatography (LSAC) the mobile phase is a liquid while the stationary phase is a finely divided, usually porous solid. The atoms in the bulk of the solid are subjected to equal forces in all directions, whereas the surface atoms experience unbalanced forces which can attract molecules from the surrounding solution to restore the balance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giles, C. H., MacEwan, T. H., Nakhwa, S. N., and Smith, D., J, Chem. Soc. 3973 (1960).Google Scholar
  2. 2.
    Snyder, L. R., Principles of Adsorption Chromatography, Dekker, New York (1968).Google Scholar
  3. 3.
    Snyder, L. R., J. Chromafog. 5, 430 (1961).CrossRefGoogle Scholar
  4. 4.
    Snyder L. R. Separation Sci. 1 191 1966CrossRefGoogle Scholar
  5. 5.
    Hesse, G., and Roscher, G., Z. Anal. Chem. 200, 3 (1964).CrossRefGoogle Scholar
  6. 6.
    Hagdahl, L., and Holman, R. T., J. Am. Chem. Soc. 72, 701 (1950).CrossRefGoogle Scholar
  7. 7.
    Snyder, L. R., Advan. Anal. Chem. Inst. 3, 251 (1964).Google Scholar
  8. 8.
    Snyder, L. R., J. Chromatog. 23, 388 (1966).CrossRefGoogle Scholar
  9. 9.
    Hesse, G., Z. Anal. Chem. 211, 5 (1965).CrossRefGoogle Scholar
  10. 10.
    Bowen, J. N., Bowrey, R., and Malin, A. S., J. Catalysis 1, 209 (1967).CrossRefGoogle Scholar
  11. 11.
    Snyder, L. R., J. Chromatog. 12, 488 (1963).CrossRefGoogle Scholar
  12. 12.
    Floridin Technical Data and Product Specifications, Floridin Co., Tallahassee, Fla.Google Scholar
  13. 13.
    Snyder, L. R., J. Chromatog. 28, 300 (1967).CrossRefGoogle Scholar
  14. 14.
    Stahl, E., and Dumont, E., J. Chromatog. Sci. 7, 517 (1969)CrossRefGoogle Scholar
  15. 15.
    Urbach, G., J. Chromatog. 12, 196 (1963).CrossRefGoogle Scholar
  16. 16.
    Gupta, A. S., and Dev. S., J. Chromatog. 12, 189 (1963).CrossRefGoogle Scholar
  17. 17.
    Chapman L. R., and Kuemmel, D. F., Anal. Chem. 37, 1598 (1965).CrossRefGoogle Scholar
  18. 18.
    Morris, L. J., J. Chromatog. 12, 321 (1963).CrossRefGoogle Scholar
  19. 19.
    Berg, A., and Lam, J., J. Chromatog. 16, 157 (1964)CrossRefGoogle Scholar
  20. 20.
    Klemm, L. H., Reed, D., and Lind, C. D., J. Org. Chem. 22, 739 (1957).CrossRefGoogle Scholar
  21. 21.
    Harvey, R. G., and Halonen, M., J. Chromatog. 25, 294 (1966).CrossRefGoogle Scholar
  22. 22.
    Kessler H. and Müller E. J. Chromatog. 24 469 1966CrossRefGoogle Scholar
  23. 23.
    Adachi, S., J. Chromatog. 17, 295 (1965).CrossRefGoogle Scholar
  24. 24.
    Cawthorne, M. A., J. Chromatog. 25, 164 (1966).CrossRefGoogle Scholar
  25. 25.
    Brockmann, H., Disc. Faraday Soc., 7, 58 (1949).CrossRefGoogle Scholar
  26. 26.
    Fogg, A. G., and Wood, R., J. Chromatog. 20, 613 (1965).CrossRefGoogle Scholar
  27. 27.
    Horvath, C. G., and Lipsky, S. R., J. Chromatog. Sci. 7, 109 (1969).CrossRefGoogle Scholar
  28. 28.
    Horvath, C. G., Preiss, B. A., and Lipsky, S. R., Anal Chim. 39, 1422 (1967).CrossRefGoogle Scholar
  29. 29.
    Kirkland, J. J., Anal. Chem. 41, 218 (1969).CrossRefGoogle Scholar
  30. 30.
    Kirkland, J. J., J. Chromatog. Sci. 7, 361 (1969).CrossRefGoogle Scholar
  31. 31.
    Majors, R. E., J. Chromatog. Sci. 8, 338 (1970).CrossRefGoogle Scholar
  32. 32.
    Webster, P. Y., Wilson, J. N., and Franks, M. C., Anal. Chim. Acta 38, 193 (1967).CrossRefGoogle Scholar
  33. 33.
    Kunin, R., Meitzner, E. F., Oline, J. A., Fisher, S. A., and Frisch, N., Ind. Eng. Chem. Prod. Res. Dev. 1, 140 (1962).CrossRefGoogle Scholar
  34. 34.
    Heftmann, E., Chromatography, Reinhold, New York (1967).Google Scholar
  35. 35.
    Hockey, J. E., Chem. Ind. (London) 57 (1965}).Google Scholar
  36. 36.
    Helfferich, F., Ion-exchange chromatography, Advan. Chromatog. 1, 3 (1966).Google Scholar

Further Reading

  1. Giles, C. H., and Easton, I. A., Adsorption chromatography, Advan. Chromatog. 3, 70 (1966). (A discussion of isotherm shape and the nature of adsorption forces on silica, alumina, and carbon.)Google Scholar
  2. Young, D. M., and Crowell, A. D., Physical Adsorption of Gases, Butterworths, London (1962). (A comprehensive review which gives an insight into the nature of physical adsorption.)Google Scholar
  3. Snyder, L. R., Principles of Adsorption Chromatography, Dekker, New York (1968). (A comprehensive account of separation processes and basic principles of liquid-solid adsorption chromatography together with a systematic generalization of available data on the separation of nonionic organic compounds.)Google Scholar
  4. Hayward, D.O., and Trapnell, B. M. W., Chemisorption, Butterworths, London (1964). (A comprehensive review which gives an insight into the nature of chemisorption.)Google Scholar
  5. Snyder, L. R., RF values in thin-layer chromatography on alumina and silica, Advan. Chromatog. 4, 3 (1967). (A general theory for the correlation and prediction of RF values in TLC. The theory is tested and confirmed by applying it to literature data.)Google Scholar
  6. Everett, D. H., and Stone, F. S. (eds.), The Structure and Properties of Porous Materials, Butterworths, London (1958). (Contains chapters on the surface characteristics of carbons and silicas.)Google Scholar
  7. Hockey, J. A., The surface properties of silica powders, Chem. Ind. (London) 1965, 57Google Scholar
  8. Mitchell, S. A., surface properties of amorphous silicas, Chem. Ind. (London) 1966, 924. (Accounts of the effects of different methods of preparation and subsequent thermal or chemical treatment on the nature and properties of the silica surface.)Google Scholar
  9. Heftmann, E., Chromatography, Reinhold, New York (1967). (A general review of chromatography.)Google Scholar
  10. Coughlin, R. W., Carbon as adsorbent and catalyst, Ind. Eng. Chem. Prod. Res. Dev. 8, 12 (1969). (The structure and surface chemistry of carbon is related to its catalytic and adsorptive behavior.)CrossRefGoogle Scholar
  11. Dubinin, M. M., Porous structure and adsorption properties of active carbons, in Chemistry and Physics of Carbon, Walker, P. L., ed., Dekker, New York (1966), vol. 2, p. 51. (Basic studies.)Google Scholar
  12. Zettlemoyer, A. C., and Narayan, K. S., Adsorption from solution by graphite surfaces, Ibid., p. 197. (Some basic studies including a comparison of Graphon and Spheron 6.)Google Scholar
  13. Amphlett, C. B., Inorganic Ion Exchangers, Elsevier, London (1964). (Covers the recently developed inorganic ion exchangers useful for high-temperature work. Mainly inorganic separations, though possibly applicable to nonaqueous work.)Google Scholar
  14. Helfferich, F., Inorganic Ion Exchangers, McGraw-Hill, New York (1962). (A comprehensive account covering basic theory of ion exchangers.)Google Scholar
  15. Inczédy, J., Analytical Applications of Ion Exchangers, Pergammon Press, Oxford (1966); Samuelson, C., Ion Exchange Separations in Analytical Chemistry, Wiley, New York (1963). (Useful practical books covering elementary theory and basic techniques of ion-exchange chromatography, including separations of organic mixtures.)Google Scholar
  16. Helfferich, F., Ion exchange chromatography, Advan. Chromatog. 1, 3 (1966). (A review of advances in ion-exchange chromatography during 1960–1965. Includes examples of organic separations in nonaqueous media and of ligand-exchange chromatography.)Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • S. G. Perry
    • 1
  • R. Amos
    • 1
  • P. I. Brewer
    • 1
  1. 1.Esso Petroleum CompanyLimited Esso Research Centre AbingdonBerkshireEngland

Personalised recommendations