Phonon Structure of Polymers
Chapter
Abstract
Historically, interactions in physics have been described by exchanges of particles. This idea was transposed to phenomena such as light, sound, magnetism or polarization. Photons, phonons, magnetons or polarons are phenomenological particles provided with specific properties which allow interactions with themselves and with solids to be described. All of these “particles” are quantum mechanical in their nature and share some basic features:
-
dual corpuscular and wave character,
-
quantized exchange of energy, momentum or spin.
Keywords
Dispersion Relation Force Constant Brillouin Zone Transverse Vibration Longitudinal Vibration
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 2.1Tarasov,V.V.; Z. Fiz. Khim. 24, (1950) 111.Google Scholar
- 2.2Baur, H., Kolloid Z. u.Z. Polym. 241 (1970), 1057.CrossRefGoogle Scholar
- 2.3Baur, H., Zeitschrift f. Naturf. 26 A (1971), 979.Google Scholar
- 2.4Baur, H., Kolloid Z. u.Z. Polym. 244 (1971), 293.CrossRefGoogle Scholar
- 2.5Baur, H., Kolloid Z. u.Z. Polym. 250 (1972), 1015.Google Scholar
- 2.6Kirkwood, J.G.; J. Chem. Phys. 7, (1939), 506.CrossRefGoogle Scholar
- 2.7Pitzer, K.S.; J. Chem. Phys. 8, (1940), 711.CrossRefGoogle Scholar
- 2.8Ya. V. Telezhenko and B.Y. Sukharevskii; J., Low Temp. Phys. 8 (2), (1982); p. 93.Google Scholar
- 2.9Rosenberg, H.M.: Inelastic Neutron Scattering in Epoxy Resins; Phys. Rev. Let. 54; p. 704; (1985)CrossRefGoogle Scholar
- 2.10Tua, P.F., Puttermann S.J. and Orbach, R.; Phys. Lett. 98 A (1983), 357.Google Scholar
- 2.11Allen, J.P.; J. Chem. Phys. 84 (8) (1986); p. 4680.CrossRefGoogle Scholar
- 2.12White, J.W.; in “ Structural Studies of Molecules by Spectroscopic Methods,” Ed. Irin; Wiley, N.Y. (1976).Google Scholar
- 2.13Filipezynski,L.; Powlonski,Z. and Wehr,J.; in “ Ultrasonic Methods of Testing Materials,” Butterworth (1966).Google Scholar
- 2.14Kitagawa,T. and Miyazawa,T.; Rept. Prog. Polym. Phys. Japan 9, (1966); p. 175.Google Scholar
- 2.15Engeln,J.; doctoral thesis 1983, Berlin; D 83; and in “Nonmetallic Materials and Composites at Low Temperatures,” Vol. 2, Plenum Press, N.Y. Eds. G. Hartwig, D. Evans, pp. 1–16, (1982).Google Scholar
- 2.16Hunklinger, S. and Schickfus; in “Amorphous Solids,” Topics in Current Physics, Ed. W.A. Philips, Vol. 24; Springer Press, Berlin, p. 81, (1982).Google Scholar
- 2.17Mandelbrot B.B.: The fractal geometry of nature; W.H. Freemen Co., N.Y. (1983), p. 329.Google Scholar
- 2.18Tasumi, M.; F. Shimanouchi and T. Miyazawa; J. Mol. Spectr. 9; p. 261; (1962).CrossRefGoogle Scholar
- 2.19Borges da Costa, J.A.; Z. f. Naturf. 38a (1983); p. 1284.Google Scholar
General Reading
- 1.Reissland J.A.: Physics of Phonons; John Wiley and Sons, New York (1973).Google Scholar
- 2.Kittel, C.; Introduction to Solid State Physics; John Wiley and Sons, New York (1973).Google Scholar
- 3.Ziman, J. A.; Electrons and phonons; Oxfort Press; (1960).Google Scholar
- 4.White, J.W.; in “Dynamics of Solid and Liquids by Neutron Scattering,” Ed. Lovesey; Springer Press, Berlin (1977).Google Scholar
Copyright information
© Springer Science+Business Media New York 1994