Polymer Networks pp 193-218 | Cite as
The Interaction between Polymeric Structure, Deformation and Fracture
Summary
The authors have recently been attempting to establish a connection between the molecular composition and the mechanical characterization of predominantly linear viscoelastic polymers in order to provide a means of directly assessing the impact of chemical structure upon engineering design. Preliminary examples using continuum mechanics and principles of three-dimensional stress analysis showed, for example, the interaction between chain stiffness and deformation and fracture. This morphological approach, utilizing an Interaction Matrix, will be reviewed in order to stimulate discussion. In addition, some possible connections between molecular structure and the specific characteristic fracture energy will be reported.
Keywords
Fracture Energy Interaction Matrix Network Chain Relaxation Modulus Relaxation CurvePreview
Unable to display preview. Download preview PDF.
References
- 1.F. Zwicky, Morphological Astronomy, Springer-Verlag Berlin, Gottingen, Heidelberg, 1957.CrossRefGoogle Scholar
- 2.F. Zwicky and A. G. Wilson, New Methods of Thought and Procedure, Springer-Verlag New York, Inc., 1967.CrossRefGoogle Scholar
- 3.M. L. Williams and F. N. Kelley, “The Relation Between Engineering Stress Analysis and Molecular Parameters in Polymeric Materials,” Proc. 5th Internat’l. Cong. Soc. Rheology, October 1968, University of Tokyo Press (1970), 185–202.Google Scholar
- 4.F. N. Kelley and M. L. Williams, Rubber Chem. & Tech. 42, 1175 (1969).Google Scholar
- 5.M. L. Williams and F. N. Kelley, CPIA Publication No. 193, Vol. 1, Johns Hopkins University, Applied Physics Laboratory, March 1970, 89–105.Google Scholar
- 6.J. D. Ferry, Viscoe Zastic Properties of Polymers, John Wiley & Sons, Inc., New York, 1961.Google Scholar
- 7.M. L. Williams, AIAA Journal 2, 785 (1964).CrossRefGoogle Scholar
- 8.M. L. Williams, R. F. Landel and J. D. Ferry, Journal Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
- 9.P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).CrossRefGoogle Scholar
- 10.A. V. Tobolsky, Properties and Structure of Polymers, John Wiley & Sons, Inc., New York (1960).Google Scholar
- 11.F. Bueche, Physical Properties of Polymers, John Wiley & Sons, Inc., New York (1962).Google Scholar
- 12.P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953.Google Scholar
- 13.L. R. G. Treloar, The Physics of Rubber Elasticity, 2nd Ed., Clarendon, Oxford, 1958.Google Scholar
- 14.W. Kuhn, Kolloid Z. 76, 258 (1936)CrossRefGoogle Scholar
- W. Kuhn, Kolloid Z. 87, 3 (1939).CrossRefGoogle Scholar
- 15.F. N. Kelley, PhD. Dissertation, University of Akron (1961).Google Scholar
- 16.J. H. Hildebrand, J. Am. Chem. Soc. 51, 66 (1929).CrossRefGoogle Scholar
- 17.G. Gee, Trans. IRI 18, 266 (1943); Advances in Colloid Sci. II, Interscience Publishers, New York (1946).Google Scholar
- 18.F. Bueche, J. Chem. Phys. 20, 1959 (1952)CrossRefGoogle Scholar
- F. Bueche, J. Chem. Phys. 25, 599 (1956).CrossRefGoogle Scholar
- 19.F. N. Kelley and F. Bueche, J. Poly. Sci. 50, 549 (1961).CrossRefGoogle Scholar
- 20.R. F. Landel, Trans. Soc. Rheology 2, 53 (1958).CrossRefGoogle Scholar
- 21.A. V. Tobolsky and E. Catsiff, J. Poly. Sci. 19, 111 (1956).CrossRefGoogle Scholar
- 22.R. F. Landel and R. F. Fedors, JPL Space Programs Summary 37–36, IV, Jet Propulsion Laboratory, 137 (1965).Google Scholar
- 23.R. F. Landel, California Institute of Technology Report, CHECIT PL 68–1, June 1968.Google Scholar
- 24.K. Ninomiya and H. Fujita, J. Coll. Sci. 12, 204 (1957)CrossRefGoogle Scholar
- K. Ninomiya and H. Fujita, J. Poly. Sci. 24, 233 (1957)CrossRefGoogle Scholar
- K. Ninomiya and H. Fujita, J. Phys. Chem. 61, 814 (1957).Google Scholar
- 25.M. L. Williams, Intl. J. Frac. Mech. 1, 292 (1965).Google Scholar
- 26.M. L. Williams, J. Appt. Phys. 38, 4476 (1967).CrossRefGoogle Scholar
- 27.S. J. Bennett, G. P. Anderson and M. L. Williams, J. Appt. Poly. Sci. 14, 735 (1970).CrossRefGoogle Scholar
- 28.M. L. Williams, J. AppZ. Poly. Sci. 13, 29 (1969).CrossRefGoogle Scholar
- 29.M. L. Williams, J. AppZ. Poly. Sci. 14, 1121 (1970).CrossRefGoogle Scholar
- 30.H. W. Greensmith and A. G. Thomas, J. PoZy. Sci. 18, 189 (1955).CrossRefGoogle Scholar
- 31.J. J. Benbow, Proc. Phys. Soc. (London) 78, 970 (1961).CrossRefGoogle Scholar
- 32.L. J. Broutman and T. Kobayashi, ACS Polymer Preprints 10, September 1969.Google Scholar
- 33.J. P. Berry, J. Poly. Sci. 2, 4069 (1964).Google Scholar
- 34.For review of the subject see B. Rosen (Ed.), Fracture Processes in Polymeric Solids, John Wiley & Sons, Inc. (1964).Google Scholar
- 35.F. Bueche and J. C. Halpin, J. AppZ.Phys. 35, 36 (1964).CrossRefGoogle Scholar
- 36.E. H. Andrews, Fracture in Polymers, American Elsevier, New York (1968).Google Scholar
- 37.G. J. Lake and A. G. Thomas, Proc. Roy. Soc. A, 300, 1460 (1967).Google Scholar
- 38.K. E. Polmanteer, J. A. Thorne, and J. D. Helmer, Rubber Chem. Tech. 39, 1403 (1966).CrossRefGoogle Scholar
- 39.G. E. Warnaka and H. T. Miller, Rubber Chem. Tech. 37, 1421 (1966).CrossRefGoogle Scholar
- 40.L. Mullins, Trans. Inst. Rubber Ind. 35, 213 (1959).Google Scholar
- 41.E. A. DiMarzio, J. Res. NBS, 68A, 611 (1964).CrossRefGoogle Scholar
- 42.L. A. Nielsen, Cross-Linking Effect on Physical Properties of Polymers, Washington University/ONR/ARPA Report HPC 68–57 (1968).Google Scholar
- 43.T. G. Fox and P. J. Flory, J. App Z. Phys. 21, 581 (1950).CrossRefGoogle Scholar
- 44.J. P. Berry, J. Poly. Sci. 50, 107 (1961).CrossRefGoogle Scholar
- 45.G. Gee, P. N. Hartley, J. B. M. Herbert, and H. A. Lanceley, Polymer 1, 365 (1960).CrossRefGoogle Scholar
- 46.T. L. Smith and R. A. Dickie, J. Polymer Sci., A27, 635 (1969).Google Scholar